
TJHSST Computer Systems Lab Senior
Research Project

An Interactive, User-driven Physics Simulator
2007-2008

Tom Smilack

February 7, 2008

1



Abstract

Physics simulations are often of single concepts or immune to user
control. My project aims to change that by allowing users to create
a situation and then simulating the behavior of objects in that situ-
ation. Users will create objects either through shape tools, then the
program will convert them to polymorphic objects and run the simu-
lation. Objects varying from the simple to complex will be modeled:
single shapes or multiple shapes connected statically or with axles.

Keywords: physics, simulation, interactive, ASSIST

1 Introduction

The majority of my research was in physics simulation: how to do it ac-
curately, what equations to use, and how to implement them. Using the
equations and properties that I give objects, the program determines and
shows the way that the objects behave. I started with basic equations and
added more complex ones as the year progressed.

This project models projectile motion and interaction between simple and
complex objects. I define simple objects as rectangles or circles, and complex
objects as multiple simple objects connected by pins or axles. Interactions
include collisions, friction, and rolling. Objects can also be anchored to the
background to provide platforms or obstacles.

My goal was to create a program, usable by anyone, that would help the
user to gain a better understanding of physical interactions by inputting any
situation using an intuitive input system and viewing the behavior of the
system. The process of creating the program would also help me to gain a
better understanding of physics.

2 Background

A team from MIT created ASSIST: A Shrewd Sketch Interpretation and
Simulation Tool which inspired this project. The program was created in
order to give engineers a way to model systems in the early stages of design,
when only an idea exists, before a traditional CAD program, which requires
precision and planning, would be appropriate. The user draws a mechanical
system on a smartboard, including an arrow for gravity. The “sketchpad”

2



system then interprets the drawing. Certain symbols have special meanings:
an x is an anchor, a small circle is a pivot. Finally, the interpreted drawing
is fed into a commercial simulator. My project was inspired by ASSIST
and aimed to be similar but with more focus on the physics rather than the
sketching.

3 Testing and Analysis

The two main sections of my program are the simulation and the objects.
The simulation is implemented both in the main program file - that is, the
file containing the main timer - and the objects themselves. The main file
contains an ArrayList of SimObjects and at each timer iteration it calls the
step and draw functions of every object. Each object is an instance of a
subclass of the abstract class SimObject. SimObject defines step, which up-
dates the object’s position and velocity when it is passed a double value dt.
It also includes a signature for the abstract method draw, which is imple-
mented differently in each subclass. The subclasses are currently Rectangle
and Circle.

Circles are easy to draw, but rectangles are more complicated because
their rotation changes the way they must be displayed. When the rectangle
is created, I determine the angle from the center to each corner. When
drawing the rectangle, I add its rotation to the angles already found and
multiply the sine and cosine of those by the distance from center to corner
to determine where to draw the points. Other polygons should be similar in
implementation to the rectangle, as I treat it more like a set of points than
as a rectangle. The method fillPolygon is used to display it.

Complex shapes will be implemented using pins and axles. Pins will
connect two shapes so that they stay together in the same position. To
achieve this I will create a ComplexObject class that will contain a list of
shapes that combine to form it. It will calculate collisions for every object in
it and apply forces to each object so that they move in unison. Axles will be
more complicated; I will have to give each object independent motion while
still keeping them attached to each other.

Collision detection has been the most complicated part of the project so
far. It is easy to find when something is past a wall - check every corner
to see if the x and y values are within an acceptable range. Determining
whether an object is in another is more difficult. For circles, one must check

3



if the distance from the center C to the point P is less than or equal to the
radius: √

(Cx − Px)2 + (Cy − Py)2 ≤ r (1)

For rectangles, one must treat each edge as a line and determine whether the
point P is inside the area enclosed by each line. The equation of each line is
the point-slope equation with y isolated on the left. If the topmost point is
T , the leftmost is L, the bottommost is B, and the rightmost is R:

LT (x) =
Ty − Ly

Tx − Lx

(x− Lx) + Ly (2)

LB(x) =
By − Ly

Bx − Lx

(x− Lx) + Ly (3)

TR(x) =
Ry − Ty

Rx − Tx

(x− Tx) + Ty (4)

BR(x) =
Ry −By

Rx −Bx

(x−Bx) +By (5)

There is a collision when the following conditions are satisfied:

Lx < Px < Rx (6)

Py < LT (Px) (7)

Py < TR(Px) (8)

LB(Px) < Py (9)

BR(Px) < Py (10)

In the event that the rectangle is straight up or to a side - in other words,
θ%2 is 0, then T , L, B, and R are sides rather than points, and the equations
become simpler:

L < Px < R (11)

B < Py < T (12)

Wall collisions and object collisions are both resolved using similar equations.
When an object collides with a wall[1]:

va2 = va1 +
j

ma

n (13)

4



ωa2 = ωa1 +
(rap × jn)

Ia
(14)

j =
−(1 + e)vap1 · n

1/ma + (rap × n)2/Ia
, e = elasticity (15)

When two objects collide, there are two more equations, and the final one
changes [1]:

vb2 = vb1 −
j

mb

n (16)

ωb2 = ωb1 −
(rbp × jn)

Ib
(17)

j =
−(1 + e)vap1 · n

1/ma + 1/mb + (rap × n)2/Ia + (rbp × n)2/Ib
(18)

There are currently three ways to create objects - two for circles and one
for rectangles. I tried to come up with as intuitive a way as possible so as to
make working with my program easy and fluid. One way of inputting circles
is to click where the center will be and drag to create a radius. The other
way is to click an edge and drag the diameter. I implemented both because
I think that the second is easier, but I have seen the first used before. It
was harder to figure out a way to create rectangles because there are more
variables than with circles. To create a rectangle, one clicks where a corner
will be, then clicks again for another corner and drags to finish the rectangle.
After creating a shape, a dialog box appears to ask for the velocity and color
of the object. I would like to create something that does not interrupt the
flow as much, but I am not sure how to do so.

Input method selection is part of the GUI. The GUI is manifested in a
menubar with the ubiquitous File, Edit, and Help menus, and two rows of
buttons along the bottom. Although File, Edit, and Help are not the most
descriptive names for menus, considering what my project does, I chose them
because psychologically it would probably be more difficult or distressing for
a user to have unfamiliar menus. They contain exit, reset, help, and about
commands. The rows of buttons along the bottom are speed controls and
input controls. The speed controls are fast rewind, rewind, pause, play, and
fast forward. They work except when collisions are involved, but I can fix
this by reversing parts of the equations. The input method controls are the
three I already mentioned, and will eventually include anchors, pins, axles,
and other polygons.

5



4 Preliminary Results

My program accurately represents projectile motion and collisions with walls
without regard to friction, and with an elasticity of one. While running, it
may seem that it is not accurate, but that is because people are judging it
with respect to their experiences, which take place in the real world, which
has many more forces than my program currently simulates. Once I imple-
ment friction and find a good way to determine the elasticity value for each
collision, my simulations will seem much more realistic.

6



References

[1] Neumann, Eric. “Rigid Body Collisions.” 2004.
<http://www.myphysicslab.com/collision.html>

7


