TJHSST Computer Systems Lab Senior
Research Project

An Interactive, User-driven Physics Simulator
2007-2008

Tom Smilack

June 16, 2008

Abstract

Physics simulations are often of single concepts or immune to user
control. My project aimed to change that by allowing users to create a
situation and then simulating the behavior of objects in that situation.
Users can create objects rectangles and circles of any size through in-
tuitive shape tools, then the program converts them to polymorphic
objects and runs the simulation. The speed of the simulation can be
controlled and users can add more shapes while it is running.

Keywords: physics, simulation, interactive, ASSIST

1 Introduction

The majority of my research was in physics simulation: how to do it ac-
curately, what equations to use, and how to implement them. Using the
equations and properties that I gave objects, the program determines and
shows the way that the objects behave. I started with basic equations and
added more complex ones as the year progressed.

This project models projectile motion and interaction between simple
objects. The objects are rectangles and circles of any size. I intended to
add support for complex objects (simple objects connected by pins or axles),
but other difficulties prevented this. Interactions include collisions, and my
original plan was to implement friction and rolling, but those also were pre-
vented by other problems. Objects can also be anchored to the background
to provide platforms or obstacles.

My goal was to create a program, usable by anyone, that would help the
user to gain a better understanding of physical interactions by inputting any
situation using an intuitive input system and viewing the behavior of the
system. The process of creating the program would also help me to gain a
better understanding of physics.

2 Background

A team from MIT created ASSIST: A Shrewd Sketch Interpretation and
Simulation Tool which inspired this project. The program was created in
order to give engineers a way to model systems in the early stages of design,
when only an idea exists, before a traditional CAD program, which requires

precision and planning, would be appropriate. The user draws a mechanical
system on a smartboard, including an arrow for gravity. The “sketchpad”
system then interprets the drawing. Certain symbols have special meanings:
an x is an anchor, a small circle is a pivot. Finally, the interpreted drawing
is fed into a commercial simulator. My project was inspired by ASSIST
and aimed to be similar but with more focus on the physics rather than the
sketching.

3 Development

The two main sections of my program are the simulation and the objects.
The simulation is implemented both in the main program file - that is, the file
containing the main timer - and the objects themselves. The timer is started
by a driver file which creates the window, adds the simulation panel to it, and
builds a menu. The menu contains a few commands such as reset and exit.
The main file contains an ArrayList of SimObjects and at each timer iteration
it calls the step and draw functions of every object. Each object is an instance
of a subclass of the abstract class SimObject. SimObject defines step, which
updates the object’s position and velocity when it is passed a double value
dt. It also includes a signature for the abstract method draw, which is
implemented differently in each subclass. The subclasses are Rectangle and
Circle.

Circles are easy to draw, as they look the same no matter how they are
rotated; one only needs to know the position and radius. Rectangles are more
complicated because their rotation changes the way they must be displayed.
When the rectangle is created, I determine the angle from the center to each
corner. When drawing the rectangle, I add its rotation to the angles already
found and multiply the sine and cosine of those by the distance from center
to corner to determine where to draw the points. Other polygons would have
been similar in implementation to the rectangle, as I treat it more like a set
of points than as a rectangle. In addition, the Graphics method fillPolygon
is used to display it.

Complex shapes were to be implemented using pins and axles. Pins would
connect two shapes so that they could stay together in the same position.
To achieve this I intended to create a ComplexObject class that would have
contained a list of shapes that combined to form it. It would have calculated
collisions for every object in it and applied forces to each object so that they

would move in unison. Axles would be more complicated; I would have had
to give each object independent motion while still keeping them attached to
each other.

Collision detection has been the most complicated part of the project so
far. It is easy to find when something is past a wall - check every corner
to see if the x and y values are within an acceptable range. Determining
whether an object is in another is more difficult. For circles, one must check
if the distance from the center C' to the point P is less than or equal to the
radius:

\/(Cx —P)?+(Cy—F)?<r (1)

For rectangles, one must treat each edge as a line and determine whether the
point P is inside the area enclosed by each line. The equation of each line is
the point-slope equation with y isolated on the left. If the topmost point is
T, the leftmost is L, the bottommost is B, and the rightmost is R:

IT(w) = 2= a— L)+ L, 2)
IB(@) = =~ L) + L, ®)
TR(z) = %:i(gg T+ T, (4)
BR(z) = %:Bz(a; _B,)+ B, (5)

There is a collision when the following conditions are satisfied:

L,< P, <R, (6)
P, < LT(P,) (7)
P, < TR(P,) (8)
LB(P,) < P, (9)
BR(P,) < P, (10)

In the event that the rectangle is straight up or to a side - in other words,
0 % 7/2 is 0, then T, L, B, and R are sides rather than points, and the
equations become simpler:

L<P. <R (11)

4

B<P,<T (12)

Wall collisions and object collisions are both resolved using similar equations.
When an object collides with a wall[1]:

Tuz = Tt + 70 (13)

Wa2 = Wa1 + W (14)
—(1 Tl - T o

(1 +)Topn - 7 ,e = elasticity (15)

DT g + Fap x 021,
When two objects collide, there are two more equations, and the final one
changes [1]:

Ty = Uy — 70 (16)
myp
Ty, X 70
Wp2 = Wp1 — (bplj) (17)
b

. _<1+€)@ap1 ‘n
1 mg + 1 my + (Fap X 1)2/ 1, + (T x)2/ 1,

In order to prevent any possible glitches with resolving collisions more
than once, and because the process must be done at the same time to both
objects, I have created a Collider class, whose method, collide, is called when-
ever there is a collision between two objects. The Collider takes both objects
as arguments and resolves the collision between them, although collisions
are not working perfectly. To resolve a collision, it is necessary to know the
direction of the normal vector that protrudes from the object (A) into which
the other object (B) travels. This would be easy to determine if the side
through which the B passed were known, but I was not sure how exactly to
find it. I thought that I could look for what side of A the majority of B was
on and then combine that with the lines I found for my collision detection.
However, if 1 looked only at the side of A that B’s protruding corner was
closest to, then there could be a problem if the corner went past the middle
of A or if it were especially close to one of A’s corners; the result could be
ambiguous.

I believe that part of my problem was that I vastly overestimated the
effectiveness of current collision detection technology; I had assumed that it

J (18)

was nearly perfect but I realized from reading an article about continuous
and discrete collision detection that that is not the case. In addition, I
underestimated the problems I would face in attempting to implement it.
Estimating the time that it will take to complete something is one of the
most important aspects of an extended project and I did not guess well with
respect to collisions. When I finally finished them I thought I would be able
to continue, but the problems with the normal line prevented that. Under
fewer time restraints I probably would have been able to complete collisions
but I spent too much time on detection.

There are currently three ways to create objects - two for circles and one
for rectangles. I tried to come up with as intuitive a way as possible so as to
make working with my program easy and fluid. One way of inputting circles
is to click where the center will be and drag to create a radius. The other
way is to click an edge and drag the diameter. I implemented both because
I think that the second is easier, but I have seen the first used before. It
was harder to figure out a way to create rectangles because there are more
variables than with circles. To create a rectangle, one clicks where a corner
will be, then clicks again for another corner and drags to finish the rectangle.
(See Fig. 1) After creating a shape, a dialog box appears to ask for the
velocity and color of the object. I would like to create something that does
not interrupt the flow as much, but I am not sure how to do so.

Figure 1: Three input methods. An image of a cursor represents a click and
a line with an arrow represents a drag.

Input method selection is part of the GUI. The GUI is manifested in a
menu bar with the ubiquitous File, Edit, and Help menus, and two rows of
buttons along the bottom. Although File, Edit, and Help are not the most
descriptive names for menus, considering what my project does, I chose them
because psychologically it would probably be more difficult or distressing for
a user to have unfamiliar menus. They contain exit, reset, help, and about
commands. The rows of buttons along the bottom are speed controls and
input controls. The speed controls are fast rewind, rewind, pause, play, and
fast forward. They work except when collisions are involved, but I can fix
this by reversing parts of the equations. The input method controls are the
three I already mentioned, and will eventually include anchors, pins, axles,
and other polygons.

Input methods are one major example of polymorphism in my project,
the other being shapes. The shapes are descended from the SimObject class
which defines getter and setter methods as well as the abstract methods
draw, checkCollision and checkWallCollision. The subclasses, Rectangle and
Circle, define these in different ways. The InputMethod class I designed
to facilitate changing of input methods. InputMethod is an abstract class
which implements the MouseListener and MouseMotionListener classes and
overrides all of their abstract methods with blank methods. The different
subclasses of InputMethod override only the methods that they need in order
to work, as well as the abstract method draw which shows and progress
on the shape being inputted, if it has not yet been completed. Whenever
the buttons controlling input are pressed, the PhysSim class removes the
current InputMethod and adds the new one to itself as a MouseListener and
a MouseMotionListener.

Anchors for the most part work well. The specific purpose of an anchor
is to lock an object to the background, enabling it to act as another wall
with which objects can interact. Objects can be manually anchored in the
setup phase of the program, when the initial data is inputted, and they
will act as they should. I created another InputMethod class for the anchor
creation button. Rather than override several mouse methods it only uses
mousePressed and borrows collision detection from the Rectangle class in
order to determine if an object was clicked. After clicking, it cycles through
every object and if the mouse is positioned over an object of class Rectangle,
the method setFixed is called to stick it to the background. When an object
is anchored, an image of an anchor appears over it and it does not move.
However, there is a glitch such that when an object is made anchored in the

8

setup phase, it will not respond to changes made by the user. In every other
respect they work, though. (See Fig. 2)

e, L Proga S

« < u e

Blo = |

Figure 2: Two anchored rectangles and one free-falling circle.

4 Results

My program accurately represents projectile motion and collisions with walls
without regard to friction, and with an elasticity of one. While running, it
may seem that it is not accurate, but that is because people are judging it
with respect to their experiences, which take place in the real world, which
has many more forces than my program currently simulates. Rudimentary
collisions between moving objects can be seen, but are not completed. In
particular, there is a glitch where objects will be able to move within the
bounds of other objects, even after they have responded to a collision. The
collisions also only work perfectly on one side, as well, because of the difficulty
I had in determining the direction of the normal line from the collision point.
Anchors serve their purpose, but the other problems combine to outweigh
that. If my program had an accurate way of determining elasticity and
friction, then it would seem much more realistic.

10

References

[1] Neumann, Eric. “Rigid Body Collisions.” 2004.
<http://www.myphysicslab.com /collision.html>

[2] Scheintaub, Hal. “Modeling modern meth-
ods in high school physics classes.” 2006.

<http://portal.acm.org/citation.cfm?id=1150034.1150210&coll=Portal
&dl=ACM&CFID=62134220& CFTOKEN=55300109>

[3] Zhang, Xinyu et. al. “Continuous collision detection for articu-
lated models using Taylor models and temporal culling.” 2007.
<http://portal.acm.org/citation.cfm?id=1275808.1276396&coll=Portal
&dl=ACM&CFID=62134220& CFTOKEN=55300109>

[4] Lander, Jeff. “Trials and Tribulations of Tribology.” 2000.
<http://www.gamedevelopment.com /features /20000510 /lander_pfv.htm>

[5] Yeh, Thomas et. al. “Enabling real-time physics sim-
ulation in future interactive entertainment.” 2006.
<http://portal.acm.org/citation.cfm?id=1183316.1183326&coll=Portal
&dI=ACM&CFID=62134220& CFTOKEN=55300109>

[6] Boeing, Adrian et. al. “Evaluation of real-
time physics simulation systems.” 2007.
<http://portal.acm.org/citation.cfm?id=1321261.1321312&coll=Portal
&dl=ACM&CFID=62134220& CFTOKEN=55300109>

11

