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Abstract

We investigate subsets of the symmetric group with structure similar to that of a graph. The

“trees” of these subsets correspond to minimal conjugate generating sets of the symmetric group.

There are two main theorems in this paper. The first is a characterization of minimal conjugate

generating sets of Sn. The second is a generalization of a result due to Feng characterizing

the automorphism groups of the Cayley graphs formed by certain generating sets composed of

cycles. We compute the full automorphism groups subject to a weak condition and conjecture

that the characterization still holds without the condition. We also present some computational

results in relation to Hamiltonicity of Cayley graphs, including a generalization of the work on

quasi-hamiltonicity by Gutin and Yeo to undirected graphs.
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1 Terminology

In this paper, we will let N denote the set {1, 2, . . . , n}. Sn will denote the symmetric group acting

on n elements with canonical action on N . An will denote the alternating group acting on N . We

will use the notation (a1 a2 . . . ak1)(b1 b2 . . . bk2) . . . to express a permutation as a product of

disjoint cycles. By the support of a permutation we will mean those elements not fixed by the

permutation. Given permutations σ, τ , στ denotes τ ◦ σ.

Given a multiset A = (a1, . . . , ak) with ai ≥ 2, we define its extended conjugacy class in Sn to

be the set of all permutations such that, when decomposed into disjoint cycles, contain cycles of

lengths a1, . . . , ak, and no others. We denote it by C(A).

Given a set S ⊂ N , define the subsymmetric group of S as the set of all permutations in Sn that

fix all elements outside of S. Define the subalternating group of S as the set of all even permutations

in Sn (i.e., the permutations in An) that fix all elements outside of S. A semisymmetric group of

S is defined as a subgroup of Sn that stabilizes S whose restriction to S forms a symmetric group

acting on S. A semialternating group of S is defined similarly.

Given a graph Γ, we let V (Γ) and E(Γ) denote the vertices and edges of Γ, respectively. An

Eulerian path is a walk in Γ that traverses each edge exactly once. It is called an Eulerian cycle

if the first and last vertices in the walk are the same. Given a group G and a set S ⊂ G, the

Cayley graph Γ = Cay(G, S) is defined as follows: each vertex is an element of G, and two vertices

g, h ∈ V (Γ) are adjacent if gh−1 ∈ S or hg−1 ∈ S.

2 Motivation and Overview

Cayley graphs are of general interest in the field of Algebraic Graph Theory and also have certain

properties desirable in practical applications. We present here a brief survey of some of the broader

results and conjectures surrounding Cayley graphs. Godsil and Royle [8] provide a useful overview

of work on graphs with transitive permutation groups in general, which we partially reproduce here.

First, all Cayley graphs are vertex-transitive since the mapping φg(x) = xg is an automorphism for

all g ∈ G. As such, there is always a representation of G in Aut(Cay(G, S)), denoted R(G). R(G)

acts not only transitively but regularly on the vertices of Cay(G, S). Sabidussi has shown that

the converse of this is true, namely that Γ if a Cayley graph of G if and only if Aut(Γ) contains a
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subgroup isomorphic to G that acts regularly on V (Γ) [19].

Minimally generated Cayley graphs have provably maximal vertex connectivity [8], which points

to uses in practical applications. Specifically, Cayley graphs have been used to create networks with

small diameter and valency and high connectivity for uses in parallel processing, and Schreier coset

graphs, a generalization of Cayley graphs, have been used to solve certain routing problems [3].

See also [2] and [20].

One tempting conjecture related to Cayley graphs is that every Cayley graph has a Hamiltonian

cycle, first given by Strasser in 1959 [18]. For more information, see [4], [12], and [16]. While we

offer some computational ideas in relation to this conjecture, the focus of this paper is on another

difficult problem in Algebraic Graph Theory, that of characterizing the automorphism groups of

Cayley graphs. We have a poor understanding of the automorphism groups of Cayley graphs,

though there are some notable exceptions (see below). These groups are fundamental as the most

natural algebraic structure to associate with an arbitrary highly symmetric graph.

Note that a graph can be defined as a collection of vertices and edges. Two vertices are adjacent

if there exists an edge connecting them, and two vertices v1 and v2 are connected if there exists

a sequence of adjacent vertices containing v1 and v2. On the other hand, consider the following

definition: Given a collection of vertices V and a collection of edges E, we can let each element

of E act on V as a transposition swapping the two vertices on which E is incident. If we then let

multiplication in E extend through the definitions of a group action, E generates a subgroup of

the symmetric group acting on V (we denote this subgroup as < E >). Then we say that v1 and

v2 are adjacent if (v1 v2) ∈ E, and that v1 and v2 are connected if (v1 v2) ∈< E >. Additionally,

connected components correspond to orbits of V under E. A tree is a minimal generating set of

S|V | consisting only of transpositions (thus the fact that trees have n − 1 vertices corresponds to

the fact that it takes n− 1 transpositions to generate Sn). It is easily verified that these definitions

are equivalent.

The algebraic properties of the related Cayley graphs of trees in the above definition are well-

understood. We know in particular that these graphs are Hamiltonian [11]. Furthermore, in 2003

Feng [5] generalized a result by Godsil [8] that fully characterizes the automorphism groups of these

graphs.
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3 C-trees

3.1 Definitions

The above definition of a graph in terms of transpositions can be generalized. Given a collection

of vertices (which, from now on, for convenience, will without loss of generality be N), and a set

T ⊂ Sn in which all elements of T are conjugate (say with conjugacy class C), then we can define

elementary notions in a C-graph as follows. v1, v2 ∈ N are adjacent if they have the same orbit

under a single element of T . They are semi-connected if they have the same orbit under T , and

connected if (v1 v2) ∈< T > (it is then easy to verify that semi-connectivity and connectivity are

equivalence relations). Connected components correspond to subsymmetric groups of < T >. A

tree is a minimal generating set of Sn with all elements lying in C. It is natural to ask why we

add the somewhat artificial-looking stipulation that all elements of T belong to the same conjugacy

class. The main reason is that this stipulation is inherent in the construction of a normal graph,

where all edges are transpositions. Additionally, without this restriction we get the result that a

tree, under our fairly intuitive definition, almost always has 2 edges since (1 2) and (2 3 4 . . . n)

generate Sn.

In this paper we will characterize C-trees and study some of their properties, including a gener-

alization of Feng’s result. However, we will still use the language of graphs for the sake of intuition.

For approaches to extending the above intuitive generalization to a well-structured system, see the

concluding section on open problems.

With C-trees defined, we introduce some more terminology associated to them. A set T ⊂ Sn is

said to be semi-connected if N has a single orbit under T (i.e. all elements of N are semi-connected).

We call it split if the intersection of the supports of any two elements of T has size at most one.

Note that if T generates Sn then it must be connected.

Given a multiset A and integer n, we define f(A,n) to be the infimum of |G| across all G ⊂ C(A)

that generate Sn. We aim to find f(A,n) for every A for sufficiently large n. Let c(A) be defined

as

|A|∑
i=1

ai − 1
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We aim to prove that there exists a function X0(A) such that, for n ≥ X0(A), f(A,n) is equal

to

dn− 1
c(A)

e (1)

when c(A) is odd, and ∞ otherwise. When c(A) is odd, then A defines the conjugacy class of

an even permutation and so f(A,n) is obviously ∞ (because it is impossible to generate any odd

permutations). Note further that f(A,n) is necessarily at least the value given by (1), as c(A)

counts the number of transpositions necessary to generate an element of C(A), and so if it was

smaller then it would be possible to generate Sn with less than n− 1 transpositions. Another way

to see this is that no potential generating sets can be semi-connected, and thus cannot generate

Sn.

3.2 Cycles

We study first the case of a single k-cycle, i.e. |A| = 1 and a1 = k. We will give explicit generators

for S2k−1:

Proposition 3.1 The set {(1 2 . . . k), (k k + 1 . . . 2k − 1)} generates S2k−1 when k is even.

Proof We construct something similar to a semisymmetric group of {1, 2, . . . , k}, except with the

elements lying in the positions {k, k + 1, . . . , 2k − 1}. From this we will construct a subsymmetric

group of {1, 2, . . . , k}, which will finally allow us to construct the entire symmetric group S2k−1.

Lemma 3.2 We can place the elements {1, 2, . . . , k} in any order in positions {k, k+1, . . . , 2k−1}

as long as we allow the other elements to move arbitrarily (even for odd k).

Proof Let σ = (1, 2, . . . , k) and τ = (k, k + 1, . . . , 2k − 1). If we allow the first k − 1 elements to

be arbitrary, we can set the last k elements to any permutation π = (π1, π2, . . . , πk) of (1, 2, . . . , k)

as follows: Rotate πk to the kth position using σ, then apply τ once. Now rotate πk−1 to the kth

position (again with σ), and apply τ again. Continue this process until we have put all k of the

desired elements into place. For example, to make the last 4 elements (2, 4, 1, 3}, we would apply

σ1τσ2τσ1τσ2. Each successive set of applications of σ moves the next desired element into place

(3, then 1, then 4, then 2).



Page 7 of 22 Jacob Steinhardt

Lemma 3.3 For k even, the k-cycles generate Sn for n ≥ k. Moreover, for k odd, the k-cycles

generate An.

Proof Let U be the set of all k-cycles. U is closed under conjugation, so < U > is normal in

Sn. Thus < U > is either (e), D4, An, or Sn, where by D4 we mean the normal subgroup of A4

isomorphic to the dihedral group of order 4. It can’t be (e) because U is non-trivial, and it can’t

be D4 because D4 contains no cycles. Thus it is An or Sn. If k is odd, it must be An because U

consists of only even permutations. If k is even, it must be Sn since U contains an odd permutation.

Lemma 3.4 We can generate the subsymmetric group on {1, 2, . . . , k} when k is even.

Proof Take some such permutation π generated in the manner of Lemma 3.2, and consider πτπ−1.

This creates an arbitrary k-cycle among the first k elements while fixing the last k − 1 elements.

Then by Lemma 3.3 we can generate the subsymmetric group on {1, 2, . . . , k}.

Now, to generate an arbitrary permutation π = {π1, . . . , π2k−1} in S2k−1, first use τ to move

{πk+1, . . . , π2k−1} to the first k − 1 elements of the set. We can do this by moving each one to

the kth position, then, since we can generate any permutation among the first k elements (recall

that we can do this by Lemma 3.4), move it to an arbitrary place among the first k − 1 elements

in which we haven’t already put anything with this process. Next apply a permutation that puts

{πk+1, . . . , π2k−1} in the proper order (though leaving them in the positions {1, 2, . . . , k − 1}). We

can then move them to their proper locations with (στ)k−1. Now that the last k − 1 elements are

in place, we can apply whatever permutation is necessary to put the first k elements in place. We

can thus generate an arbitrary permutation and therefore S2k−1. This completes Proposition 3.1.

Proposition 3.5 f((k), n(k − 1) + 1) = n for n ≥ 2 and k even.

Proof This follows by induction on n. Proposition 3.1 proves the base case of n = 2. The inductive

step is completed by the following easily verified lemma:

Lemma 3.6 The subsymmetric group on S, together with the cycle (a1, . . . , an), generates the

subsymmetric group on S ∪ {a1, . . . , an} provided that S ∩ {a1, . . . , an} 6= ∅ and S 6⊂ {a1, . . . , an}.



Page 8 of 22 Jacob Steinhardt

Corollary 3.7 f((k), n) = dn−1
k−1 e for n ≥ 2k − 1.

Proof Take the construction for when n−1
k−1 is an integer (i.e. that given above in Proposition 3.5).

Then, to extend the formula to arbitrary n, add the k-cycle (n− k + 1, n− k + 2, . . . , n) and apply

Lemma 3.6. This completes the claimed characterization of f(A,n) for cycles.

3.3 Products of Transpositions

Having proven our result for cycles, we would like to extend it to more complex permutations. We

will start with the simplest of these, i.e. products of disjoint transpositions. We call a permutation

basic if it is of this form, and denote Bk = (2, 2, . . . , 2) (k twos).

Proposition 3.8 f(Bk, n) = dn−1
k e for n ≥ k(2k + 1) + 1 and k odd.

Proof Our goal will be to write 2k + 1 explicit generators for Sk(2k+1)+1. Then we can easily

proceed by induction as before. Such generators must form a semi-connected set. However, we

would also like the set to be split so that only one cycle interacts at a time when multiplying

permutations. To do this, we will find an Eulerian cycle of K2k+1, which will allow us to create a

connected and split set.

First note that every vertex of K2n+1 has even degree (in particular, degree 2n), so that K2n+1

has an Eulerian cycle. We now construct generators from this cycle. We start with an example,

then give a general method. Consider k = 3, 2k + 1 = 7, and the cycle 1 → 2 → 4 → 7 → 1 → 3 →

6 → 7 → 2 → 5 → 6 → 1 → 4 → 5 → 7 → 3 → 4 → 6 → 2 → 3 → 5 → 1. We have the generators

g1 = (1 2)(5 6)(12 13) g2 = (2 3)(9 10)(19 20)

g3 = (6 7)(16 17)(20 21) g4 = (3 4)(13 14)(17 18)

g5 = (10 11)(14 15)(21 22) g6 = (7 8)(11 12)(18 19) g7 = (4 5)(8 9)(15 16)

Note that if we follow the path of permutations containing (1, 2), (2, 3), (3, 4), . . . , (21, 22), then we

get g1, g2, g4, g7, . . . , g3, g5, i.e. exactly the constructed Eulerian cycle (with the exception of the

final vertex). This is the general method in which we will construct our generators. Specifically, we

place the transposition (i i+1) in the generator corresponding to the ith vertex visited in the cycle.
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Note that the properties of an Eulerian cycle guarantee that these generators will be semi-connected

and split. The semi-connected part is obvious, whereas the split part is a consequence of the fact

that every edge is traversed exactly once, which corresponds to the fact that each pair of generators

move at most one common element. We now show this construction generates Sk(2k+1)+1.

Theorem 3.9 If T ⊂ C(Bk) is semi-connected and split, then < T >= Sn or An, depending on

whether k is even or odd.

Proof We call two generators adjacent if they move a common element. Consider two adjacent

generators, gi and gj , and consider gigjgigj . All transpositions are applied twice in this case and

therefore cancel, except for the two transpositions that act on the same element, which multiply to

a three cycle. So, in the above example, g5g7g5g7 = (14 15)(15 16)(14 15)(15 16) = (14 16 15)2 =

(14 15 16). In this manner, we generate all 3-cycles of the form (i i + 1 i + 2). We wish to show

that these generate An. From this, we would be done, since any odd permutation then allows us

to generate Sn. In fact, it is convenient for later purposes to prove a slightly stronger result:

Lemma 3.10 When n is odd, the subalternating group on S, together with the cycle (a1, . . . , an),

generates the subalternating group on S ∪ {a1, . . . , an} provided that S ∩ {a1, . . . , an} 6= ∅ and that

|S ∩ {a1, . . . , an}| ≤ |S| − 2. When n is even, it generates the entire subsymmetric group.

Proof Like Lemma 3.6, the proof is easy enough to omit. The only important detail to note is

that we get |S∩{a1,...,an}|!
2 distinct permutations, which must be the alternating group when n is odd

or must generate the symmetric group by Lagrange’s theorem when n is even.

In particular, a 3-cycle looks like A3, so the given 3-cycles indeed generate the alternating group

(they are semi-connected since T was semi-connected), and we are done with Theorem 3.9.

Our proof of the remainder of Proposition 3.8 (i.e. the induction and extension to cases when

c(A) does not divide the n− 1) follows in exactly the same manner as that of Proposition 3.1, and

so we omit it, instead referring the reader to Proposition 3.5 and Corollary 3.7. The only necessary

modification is that we must deal with each of the cycles in the added permutation one at a time

in our inductive step.
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3.4 The General Case

We would next like a general criterion for connectedness. We present it here:

Definition A set T ⊂ C(A) is called balanced if it is possible to divide the set of orbits of elements

of T into disjoint sets S1, S2, . . . , S|A| such that all orbits in Si have the same size and each element

of Si overlaps with at least one other element of Si. We will denote the size of the orbits in Si by

ai.

Theorem 3.11 All semi-connected, split, balanced sets in the extended conjugacy class of an odd

permutation generate Sn.

Proof We proceed by induction on two quantities: first |A|, then the number of occurrences of

2 in A. Note that we have already proven the base cases of this induction in Corollary 3.7 and

Proposition 3.8.

We call two permutations i-adjacent if they both have orbits in Si. Pick i such that ai is

maximal, and consider any two i-adjacent permutations, σ and τ , with orbits iσ and iτ in Si. By the

same argument as Proposition 3.1, these generate the semialternating group on the elements moved

by the two identified cycles (moving 2ai−1 elements in total). Thus in particular, by Chebyshev’s

Theorem [17], there exists a prime strictly between ai and 2ai, and the semialternating group

contains a cycle of this length, call it p.

Consider each cycle of this length in our semialternating group, and apply it lcma∈Aa times.

Since p is prime and aj < p for each j, we end up with a p-cycle, which we can then apply some

number of times to get back to our original p-cycle. Note, however, that all other elements that

were moved contained only cycles of length aj for some j, and so were all cancelled out by the above

repeated application. Thus we are left only with the actual p-cycle. Repeating this for all such

p-cycles in the semialternating group gives us all actual p-cycles, i.e. those living in the associated

subalternating group. Thus, by the same arguments as in Lemma 3.3, they generate the entire

subalternating group. If ai is odd, then iσ and iτ both live in this subalternating group, and so we

can take σ(iσ)−1 and τ(iτ)−1. Taking σ(iσ)−1 for all σ ∈ T (we can do this since T is balanced)

gives us a semi-connected, split, balanced set with strictly less orbits in each permutation, so that

we can apply the inductive step to generate the subsymmetric group on the elements moved by
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these new permutations. Then, by adding iσ for each σ ∈ T , by Lemma 3.5 we can generate the

entire symmetric group, and we are done.

On the other hand, if ai is even, then we can only cancel iσ down to a transposition. However,

this gives us an extended conjugacy class with the same number of orbits, but with strictly more

occurrences of 2 in A than before. Thus we can apply the inductive step in the same manner

as above, and are once again done. Note that in both cases we attained elements in the new

extended conjugacy class by multiplying elements in the old extended conjugacy class by an even

permutation. This shows that the new extended conjugacy class does indeed correspond to an odd

permutation.

We are now ready to prove our major contention:

Theorem 3.12 Let A be a multiset of size k. Then there exists some X0(A) such that f(A,n) =

dn−1
c(A)e when n ≥ X0. Furthermore, X0((k)) ≤ 2k − 1, X0(Bk) ≤

(
2k+1

2

)
+ 1, and X0(A) ≤

c(A)Φ2|A|(2|A|) + 1, where Φk denotes the kth cyclotomic polynomial.

Proof Note that the first two bounds have already been proven. For the final case, we again use

Eulerian cycles, this time with the goal of creating a semi-connected, split, and balanced set. In

particular, we find a prime congruent to 1 mod 2k. We know that such a prime exists that is less

than Φ2k(2k) (proof sketch in appendix).

Take such a prime, p, fitting the properties described above. If p−1
2 = kn, then we will work in

the extended conjugacy class that is equivalent to n copies of A, then use this to move down to A

itself. We construct an Eulerian cycle for Kp as follows. The edges (mod p) will be

1, 2, . . . , p, 2, 4, . . . , 2p, 3, . . . , 3p, . . . ,
p− 1

2
, p− 1, . . . ,

p(p− 1)
2

So, for example, if p = 7 then we have (in the case of 2-cycles) the associated generators

(1 2)(11 12)(19 20) (2 3)(8 9)(17 18)

(3 4)(12 13)(15 16) (4 5)(9 10)(20 21)

(5 6)(13 14)(18 19) (6 7)(10 11)(16 17) (7 8)(14 15)(21 22)
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We can extend this past 2-cycles (for example, permutations in the extended conjugacy class (2, 4, 5)

in the following manner:

(1 2)(11 23 24 12)(19 37 38 39 20) (2 3)(8 25 26 9)(17 40 41 42 18)

(3 4)(12 27 28 13)(15 43 44 45 16) (4 5)(9 29 30 10)(20 46 47 48 21)

(5 6)(13 31 32 14)(18 49 50 51 19) (6 7)(10 33 34 11)(16 52 53 54 17) (7 8)(14 35 36 15)(21 55 56 57 22)

Note that we simply add elements to cycles in the ith column until the cycles in that column have

length ai. Note also that this is a balanced set by construction. It is easy to verify that this also

defines an Eulerian cycle, and is thus connected and split. On the other hand, we have the following

result:

Lemma 3.13 If B is equivalent to k copies of A, and if there exists T ⊂ C(B) that generates Sn,

then there exists T ′ ⊂ C(A) that generates Sn, and furthermore such that |T ′| = k|T |.

Proof Split each σ ∈ T into k permutations such that each of these permutations lies in C(A).

These obviously generate Sn since products of them generate Sn.

This proves the base case of a final induction showing that f(A,n) = dn−1
c(A)e for all n ≥ X0,

where X0 = pc(A) + 1. This induction will finally prove Theorem 3.12. However, once again this

new induction is identical to the completions of Propositions 3.1 and 3.8, and so we refer the

readers there for the completion of the proof.

4 Automorphism Groups

We devote this section to the characterization of the automorphism groups of certain C-graphs.

Definition Given a split set of cycles T ⊂ Sn, the cycle graph Cyc(T ) is formed by associating

each vertex with an element of N and drawing edges x1x2, x2x3, . . . , xk−1xk if (x1 x2 . . . xk) is in

T . Note that this involves arbitrarily choosing a “starting” and “ending” point for each cycle in T .

When T consists of transpositions, Feng [5] refers to Cyc(T ) as Tra(T ).

Definition Given a split set of cycles T , the degree of some t ∈ T is defined as the number of

distinct points in its support that overlap with other cycles. If t has degree 1, we call it a leaf.
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Definition A split set of more than two cycles generating Sn is said to be normal if any element is

adjacent to at most 1 leaf, and furthermore Cyc(T ) is a tree (note that this is stronger than asking

that T be a minimal generating set of Sn, as it effectively adds the criterion that n ≡ 1 (mod k),

where T consists of k-cycles).

We use this to offer a partial generalization to a theorem by Feng [5] that states that Aut(Cay(Sn, T )) ∼=

R(Sn) o Aut(Sn, T ), where Aut(Sn, T ) = {φ ∈ Aut(Sn) | φ(T ) = T}, and furthermore that

Aut(Sn, T ) ∼= Aut(Tra(T )). In the following, T will always be normal, and if we talk about a

graph it will be Cay(Sn, T ) unless otherwise specified:

Theorem 4.1 Let T be a normal set. Then Aut(Cay(Sn, T )) ∼= R(Sn)oAut(Sn, T ), where R(Sn)

is the representation of Sn as an action on Cay(Sn, T ).

Proof We use Feng’s idea of finding cycles that force graph automorphisms to be group automor-

phisms. Certain lemmas requiring case analysis will be dealt with in the appendix.

Lemma 4.2 Let t1, t2 ∈ T . Then there exists a unique 4-cycle containing the path t2 → (e) → t1

iff t1t2 = t2t1, and furthermore the cycle will be (e) → t1 → t1t2 → t2 → (e).

Proof See appendix.

Lemma 4.3 Let t1, t2 ∈ T such that t1t2 6= t2t1. Then the 6-cycle corresponding to t1t2t1t2t1t2 is

sent to another cycle of this form under graph automorphisms when t1 and t2 are transpositions.

Otherwise, the same statement holds for the 12-cycle corresponding to t1t2t
−1
1 t−1

2 t1t2t
−1
1 t−1

2 t1t2t
−1
1 t−1

2 .

Proof The case of transpositions was dealt with by Feng [5]. It is easily verified that the latter

construction is a cycle when t1 and t2 are not transpositions (it is the union of two cycles when they

are transpositions). Also note that no two consecutive edges correspond to commuting generators,

and this property is preserved through graph automorphisms by Lemma 4.2. It is natural to try to

prove that this is the only 12-cycle going through t1 and t2 where no two consecutive edges commute.

However, this is false, as shown by the following counterexample: Let a = (1 2 3 4), b = (1 5 6 7),

c = (1 8 9 10), d = (1 11 12 13). Then aba−1b−1aba−1b−1aba−1b−1 = abcdcb−1a−1bc−1d−1c−1b−1 =

(e). We say that edge types are preserved by an automorphism if, whenver x1y1 and x2y2 are edges
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corresponding to the same element of the generating set, then so are φ(x1y1) and φ(x2y2). If we

only allow use of the symbols a, b, a−1, b−1 and assume that edge types are preserved, then this is

indeed the only noncommuting 12-cycle, as demonstrated in the appendix. This leads to a proof

of our theorem in a special case, which we will make use of:

Lemma 4.4 Theorem 4.1 holds when |T | = 2, assuming that edge types are preserved.

Proof The preceding comments show us that commutators of generators map to commutators

of generators. Thus φ(a)φ(b) = φ(ab) for all generators a, b, so that φ(x)φ(y) = φ(xy) for all

xy by induction. The induction itself is sufficiently non-trivial that we feel obliged to include

it, but sufficiently technical that we will relegate it to the appendix, even though it requires no

case analysis. We have thus shown that all graph automorphisms fixing (e) are in fact group

automorphisms as well. That this implies Theorem 4.1 we wait to prove in full generality at the

end of this section.

Now for any a, b ∈ T , look at Γ0 = Cay(Sn, {a, b}) ⊂ Γ. The 12-cycle described above must

lie inside Γ0. We wish to show that, for any automorphism φ ∈ Aut(Γ) fixing (e), φ(Γ0) =

Cay(Sn, {φ(a), φ(b)}), from which it will follow that commutators map to commutators in general,

and we will have proved Lemma 4.3, whence Theorem 4.1 follows from the same arguments as in

Lemma 4.4.

We will, in fact, prove a stronger contention, namely that if two edges represent the same group

element, then their images also represent the same group element. We first offer an automorphism-

invariant criterion for determining whether two adjacent edges represent the same group element

of the Cayley graph when T is normal.

Lemma 4.5 Let x → y → z be a path in Γ. Then xy and yz represent the same group element

if and only if the number of 4-cycles going through xy equals the number of 4-cycles going through

yz.

Proof Note that if xy and yz correspond to the same group element, then the number of 4-cycles

going through xy definitely equals the number of 4-cycles going through yz by Lemma 4.2. (Note

that this is true even if T consists of 4-cycles.) The opposite direction is an easy consequence of

the normality condition.
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Now note that, by looking at commutativity of edges, we obtain the incidence structure of

Cyc(T ). Thus the group elements that each edge corresponds to is uniquely determined by which

edge each leaf corresponds to (this is simply a consequence of the fact that a tree is determined by

the paths between terminal nodes). Thus, given an edge from v corresponding to a leaf λ, whose

pre-image under φ is λ0, it suffices to prove that any edge from an adjacent vertex w corresponding

to λ also has pre-image λ0. First note that unless |T | = 2, which has already been dispatched of,

all leaves commute. We consider two cases: adjacency between v and w is induced by a leaf, or the

adjacency is induced by a non-leaf.

Case one: We may assume that all leaves commute, whence we are done by Lemma 4.2.

Case two: By the normality condition, the group element associated with vw must commute

with all but one edge, from which we are again done by Lemma 4.2. Then, noting that leaves are

mapped to leaves under any graph automorphism, the final leaf only has one place to go (actually,

one could make the argument that there are two places to go – to itself or to its inverse, but both

of these edges correspond to the same group element, which is all that we care about).

This completes our contention, so that we are finally done with Lemma 4.3.

By Lemma 4.2, commutativity of edges is preserved through graph automorphisms. Further-

more, cycles are preserved through graph automorphisms. Thus in particular, {φ(t1), φ(t1)φ(t2), φ(t2), (e)}

must be the image of {t1, t1t2, t2, (e)} if φ is a graph automorphism fixing (e) and t1, t2 ∈ T com-

mute. This implies that φ(t1)φ(t2) = φ(t1t2). By the same argument, and using Lemma 4.3,

φ(t1)φ(t2) = φ(t1t2) if t1, t2 ∈ T don’t commute. Thus φ(t1)φ(t2) = φ(t1t2) for all t1, t2 ∈ T . This

implies that φ is not only a graph automorphism but a group automorphism, by the same argument

as in Lemma 4.4.

It follows by abuse of notation that Aut(Cay(Sn, T ))(e) ⊂ Aut(Sn, T ), where Gx denotes the

stabilizer of x under the action of G. But it is well-known that Aut(Sn) ∼= Sn (the isomorphism

being with the inner automorphism group) for n 6= 6 [5], so that Aut(Sn, T ) ⊂ Aut(Cay(Sn, T ))(e)

when n 6= 6 (it is easily verified that any inner automorphism of Sn preserving T must also

preserve incidence in Γ and is thus a graph automorphism). Note that n = 6 only when k = 2,

which has already been dispatched, so the theorem holds for all n that we care about. Since

Aut(Cay(Sn, T )) = R(Sn)Aut(Cay(Sn, T ))(e) and the two subgroups have trivial intersection, we
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will have a complete characterization of Aut(Cay(Sn, T )) if we can show that R(Sn) is normal.

This follows since R(Sn) is closed under conjugation by elements of Aut(Sn, T ). Thus we have that

Aut(Cay(Sn, T )) ∼= R(Sn) o Aut(Sn, T ), as stated.

Comment Though it is always regrettable when a result cannot be proven in full generality, we

claim that the normality condition is relatively weak. Indeed, given any set T , we can define a

normalization of T to be a new C-graph obtained from T by adding another cycle incident on each

leaf of T . It is easily verified that this results in a normal set.

Comment Though non-normal generating sets for Sn are too big to test, the characterization

works for A7 with the generating set T = {(1 2 3), (1 3 2), (1 4 5), (1 5 4), (1 6 7), (1 7 6)}, as

the automorphism group has size 120960 (computed by nauty). In this case the group remains the

semi-direct product of A7 and the automorphisms of S7 fixing T .

5 Quasi-hamiltonicity

For the sake of future work on the conjecture of Rappaport-Strasser and on Hamiltonicity of directed

graphs in general, we generalize the work of Gutin and Yeo to on quasi-hamiltonicity to undirected

graphs (see [10] for the original paper). We will assume that R ⊂ V (Γ).

Definition A cycle factor in an undirected graph Γ is a subgraph of Γ such that every vertex has

degree 2.

Definition Let QH1(Γ, R) := {e ∈ E(Γ) | e∪R is in a cycle factor }. For k > 1, let QHk(Γ, R) :=

{e ∈ E(Γ) |QHk−1(Γ, e∪R) is connected }. Then we say that Γ is k-quasi-hamiltonian if QHk(Γ, {})

is connected.

Obviously k-quasi-hamiltonicity in an undirected graph implies k-quasi-hamiltonicity in the

associated digraph. Indeed, it is equivalent to k-quasi-hamiltoncity for digraphs if we disallow

cycles of length 2 in the cycle factor. In particular, an undirected graph is Hamiltonian iff it is

(n−2)-quasi-hamiltonian, since this implies the existence of a cycle factor containing n−2 connected

vertices (so the last two vertices must also be connected).
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Theorem 5.1 Given Γ, define the bipartite graph B(Γ) to have vertex set T1 = {x1, . . . , xm}∪T2 =

{y1, . . . , ym}, where m = |V (Γ)|, and there exists a directed edge from xi to xj iff vertices i and j

are adjacent in Γ. Create a flow network where each edge in B(Γ) has capacity 1 and there is a

source s with an edge of capacity 2 into every vertex in T1, similarly an edge of capacity 2 from

every vertex in T2 into a sink t. Then there exists a cycle factor in Γ containing R iff there exists

a flow of 2m from s to t, such that all edges pertaining to elements of R have flow going through

them.

Proof Suppose that there exists a cycle factor of Γ containing R. Push flow through xiyj and

xjyi iff the edge ij is in the cycle factor. This gives the desired flow. Now suppose that we have

such a flow and wish to construct a cycle factor. It is well-known that we can “force” flow to

go through an edge by finding an augmenting path containing that edge and then not adding the

back-flow through that edge when we push flow through the augmenting path. Thus asking for the

existence of such a flow is equivalent to forcing flow through all of the edges pertaining to R (for

brevity, from now on we will call this “forcing flow through R”) and asking for the existence of a

flow of 2(m − |R|) in the resulting graph. Since any choice of augmenting paths must give us the

same maximum flow, we can choose any set of augmenting paths that forces flow through R. In

particular, given any augmenting path P, we can define another path r(P) to be the path obtained

by replacing all instances of xi with yi (and vice versa) and reversing the orientation of each edge in

P. Note that P and r(P) are edge-disjoint since Γ contains no self-loops. If whenever we augment

by a path P, we also augment by r(P), then it will be true that P is an augmenting path iff r(P)

is an augmenting path. In particular, we do this while forcing flow through R. We then continue

to do this while performing the maxflow algorithm. By the symmetry of our algorithm, after we

have completed it there will be flow through an edge xiyj iff there is flow through an edge xjyi.

Now take the subgraph Γ0 of Γ formed by all edges ij such that there is flow through xiyj in B(Γ).

Since we have a flow of 2m by assumption, every vertex in Γ0 has degree 2, thus is a cycle factor,

completing the theorem.

Due to the high degree of symmetry of Cayley graphs, if Γ does not contain a Hamiltonian

cycle then it is (intuitively) likely to have a quasi-hamiltonicity number sufficiently high that it is

infeasible to check. We would thus like a more efficient block to Hamiltonicity for Cayley graphs.
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Definition A subset T of a group G is said to have a left coset partition if there exists a set S

such that s1T and s2T are disjoint for distinct s1, s2 ∈ S, and such that ST = G.

Definition A cycle factor is said to be symmetric if it is also a left coset partition.

Note that any Hamiltonian cycle is also a symmetric cycle factor. We can thus define the

analogous form of quasi-hamiltonicity where all cycle factors are required to be symmetric. Given

a sufficiently crisp characterization of sets with coset partitions, it seems likely that a more effective

algorithm for Hamiltonicity blocks could be designed.

6 Conclusion and Open Problems

A minor but interesting detail of this paper is the dependence of our bound on X0(A) on the

existence of certain primes. There is no reason to believe that this bound should be strict, and so a

more complete understanding of C-trees may be reached by a more precise study of the properties

of X0(A). If the bound is given by explicit constructions, then the result of such a study would

also be smaller Cayley graphs that would be more feasible to analyze empirically.

Disregarding our poor understanding of X0(A), C-trees have been effectively characterized.

With this stepping stone, it would be useful to define some more concepts related to C-graphs (in

a structurally interesting way). After a tree, the next simplest definition to make is that of a cycle.

For a possible idea, we will borrow ideas from matroid theory. We call a set independent if it is a

subset of a tree, and dependent otherwise. A simple cycle is then a subset of T that is dependent,

but whose proper subsets are all independent. Of course, any other algebraic properties of graphs

that could carry over to C-graphs would also be interesting. The author believes that an alternate

definition of C-trees leading to a nice matroid structure on the power set of T would make all

remaining generalizations transparent. The trees under this structure would also most likely lead

to even more structured Cayley graphs.

We have fully characterized the automorphism groups of certain C-trees. We would like a gen-

eralization, at the very least, of arbitrary split sets consisting of k-cycles. We conjecture that

Theorem 4.1 holds for all such sets. Similarly, we seek a generalization of Feng’s theorem re-

garding the isomorphism between Aut(Tra(T )) and Aut(Sn, T ) that gives a relation between the
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automorphism groups of Cyc(T ) and Aut(Sn, T ).

We turn to the spectral analysis of the Cayley graphs in question. In particular, we look at

the Cayley graphs formed when |T | = 2. Clearly the largest eigenvalue is 4 in this case, since

the Laplacian is a positive semidefinite matrix. It is interesting to note that the second-largest

eigenvalue is 1 +
√

3 when k = 2 and 1 +
√

7 when k = 4 (the latter result was established

empyrically). It is therefore very tempting to conjecture that the second-largest eigenvalue is

always 1 +
√

2k − 1, but this is unfortunately nonsense since it can never exceed 4.

Most importantly, this paper points to a deeper connection between Cayley graphs formed by

transpositions and by k-cycles. This is structurally apparent in the similarities between the two

in terms of commutativity and conjugacy, and indicates that more results should generalize to the

case of k-cycles. For example, in [1] the Coxeter representation of the transpositions is used to gain

information about the spectrum of the Cayley graphs. A generalization of the notion of Coxeter

representation to account for k-cycles would likely allow for the generalization of these results.

Finally, we propose a more general mathematical program to understand the nature of Cayley

graphs formed by conjugate generating sets in general, which we believe to be a distinguished

variety. So far, all theorems regarding these graphs show that the automorphism group is minimal

in a certain sense. We propose the task of finding cases when the group is not minimal, but is close

to minimal, and analyzing what happens there, when everything should be more transparent. This

should point us towards more general results regarding these graphs.

7 Appendix

7.1 A Bound on Dirichlet’s Theorem

Theorem 7.1 For each n > 1, there is a prime of the form kn + 1 that divides Φn(n).

Proof It can be shown that if p|Φn(j), then either p|n or p ≡ 1 (mod n). But Φn(n) ≡ 1 (mod n),

so we must have the second case. Additionally, Φn(n) =
∏

n − ξ, for each primitive root of unity

ξ. But

∏
n− ξ =

√∏
(n− ξ)(n− ξ̄) =

√∏
n2 + 1− 2n cos(θ) >

√∏
n2 + 1− 2n =

∏
n− 1 ≥ 1
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so we must have some prime dividing Φn(n), and we are done.

7.2 Case Analysis for 4-cycles

We are asking for a′ and b′ such that ab′a′b = (e), or equivalently bab′a′ = (e). Thus (for the

supports of ab and a′b′ to be the same) a′b′ ∈ {ab, ab−1, a−1b, a−1b−1, ba}. a′ cannot be b−1 and

b′ cannot be a−1 since this would correspond to a path doubling back on itself. Since the product

of two split k-cycles is a 2k − 1-cycle, abab is a 2k − 1-cycle, and in particular not the identity.

abab−1 = a(bab−1) is the product of two k-cycles with different supports, and so is again not the

identity. Similar logic holds for aba−1b = (aba−1)b. aba−1b−1 = (e) implies that ab = ba, which

is what we want. Finally, abba = (e) implies aabb = (e), which is impossible since aa and bb have

different supports.

7.3 Case Analysis for Commutators

The full details of this argument can be found at http://www.tjhsst.edu/~jsteinha/Cayley.

pdf. The crux of the argument is repeated use of symmetry, which eventually shows that all

interesting cases WLOG start with abab−1. We then list out all products of four generators such

that no two consecutive generators commute or represent the same element. By looking at what

compositions of permutations can send 1 back to 1, we reduce essentially to 6 remaining cases,

which are easy to check through simple calculations. This completes our case analysis.

7.4 Induction Argument for Lemma 4.4

We have already shown that φ(a)φ(b) = φ(ab) for any automorphism φ of Γ fixing (e). We have

the following lemma:

Lemma 7.2 If φ is a (graph) automorphism of Γ, then so is φy = φ(y−1)φ(yx).

The proof is a routine verification. Now, we wish to show by induction that

φ(t1t2 . . . tn) = φ(t1)φ(t2) . . . φ(tn)

for all φ ∈ Γ. Now note that
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φ(t1t2 . . . tn) = φ(t1)φt1(t2 . . . tn) = φ(t1)φt1(t2) . . . φt1(tn) = φ(t1) . . . φ(tn)

where the equality between the second and third expressions follows by the inductive step. This

completes our induction.
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