COMPUTER SYSTEMS RESEARCH
Portfolio Update Report 3rd Quarter 2007-2008
Research Paper, Poster, Slides, and Analysis of your program. Looking ahead – Plan for 4th Quarter

Name: Drew Stebbins, Period: 6, Date: 4/3/2008

Project title or subject: Car Recognition Through SIFT Keypoint Matching

Computer Language: C/C++, with the use of GNU Make

Describe the changes/updates you have made to your research portfolio for 3rd quarter. Also describe your plan to complete your project for 4th quarter

1. Coding: attach new code that you wrote or modified 3rd quarter. Describe the purpose of this code in terms of your project's development.

wheel_detect.cpp centers the region of interest (ROI) in an image around a car’s front and back wheels through the use of the Hough transform circle detector:

#include <iostream>

#include <string>

#include <iomanip>

#include <fstream>

#include <map>

#include <cmath>

using namespace std;

//struct for holding rgb color values

typedef struct {

int r,g,b;

} rgb;

const int NUMCIRCLES = 2;

const int NUMANGLES = 360;

int main(int argc, char *argv[]){

string magicnum, comment;

int height, width, range;

int edge_threshhold = 100;

int circle_threshold = 240;

//32.0 for honda

double RADIUS = 34.0;

double best_radius_l = RADIUS;

double best_radius_r = RADIUS;

double bestthreshold_l = 0;

double bestthreshold_r = 0;

int bestx_l = 0;

int bestx_r = 0;

int besty_l = 0;

int besty_r = 0;

ifstream in;

cout << "opening file: " << argv[1] << endl;

in.open(argv[1], ios::in);

getline(in, magicnum);

if(!(magicnum == "P3")){

 cout << "error: image is not of type PPM!" << endl;

 return 0;

}

getline(in, comment);

in >> width;

in >> height;

in >> range;

cout << "width: " << width << " height: " << height << " range: " << range << endl;

cout << "initializing arrays... " << endl;

cout << "ppm" << endl;

rgb** ppm = new rgb*[height];

for(int k = 0; k < height; k++){

ppm[k] = new rgb[width];

for(int c = 0; c < width; c++){

ppm[k][c].r = 0;

ppm[k][c].g = 0;

ppm[k][c].b = 0;

}

}

cout << "pgm" << endl;

int** pgm = new int*[height];

for(int k = 0; k < height; k++){

 pgm[k] = new int[width];

for(int c = 0; c < width; c++){

pgm[k][c] = 0;

}

}

cout << "smoothed" << endl;

int** smoothed = new int*[height];

for(int k = 0; k < height; k++){

 smoothed[k] = new int[width];

for(int c = 0; c < width; c++){

smoothed[k][c] = 0;

}

}

cout << "edges" << endl;

int** edges = new int*[height];

for(int k = 0; k < height; k++){

 edges[k] = new int[width];

for(int c = 0; c < width; c++){

edges[k][c] = 0;

}

}

cout << "circles" << endl;

int** circles = new int*[height];

for(int k = 0; k < height; k++){

 circles[k] = new int[width];

for(int c = 0; c < width; c++){

circles[k][c] = 0;

}

}

cout << "accum" << endl;

int** accumulator = new int*[height];

for(int k = 0; k < height; k++){

 accumulator[k] = new int[width];

for(int c = 0; c < width; c++){

accumulator[k][c] = 0;

}

}

/*

cout << "visited" << endl;

bool** visited = new bool*[height];

for(int k = 0; k < height; k++){

 visited[k] = new bool[width];

 for(int c = 0; c < width; c++){

 visited[k][c] = false;

 }

}

*/

cout << "done." << endl;

cout << "reading file... " << endl;

//read the input file into an array of rgb data structures

for(int y = 0; y < height; y++){

 for(int x=0; x < width; x++){

in >> ppm[y][x].r;

in >> ppm[y][x].g;

in >> ppm[y][x].b;

}

}

in.close();

cout << "done.\ngenerating grayscale image... " << endl;

//generate a greyscale representation of the input file

for(int y = 0; y < height; y++){

 for(int x=0; x < width; x++){

pgm[y][x] = (ppm[y][x].r + ppm[y][x].g + ppm[y][x].b)/3;

}

}

cout << "done.\napplying gaussian filtering... " << endl;

//generate a flattened grayscale image using gaussian filtering

for(int y = 1; y < height-1; y++){

 for(int x=1; x < width-1; x++){

smoothed[y][x]=(pgm[y][x]*4+pgm[y-1][x]*2+pgm[y+1][x]*2+pgm[y][x-1]*2+pgm[y][x+1]*2+pgm[y-1][x+1]*1+pgm[y-1][x-1]*1+pgm[y+1][x+1]*1+pgm[y+1][x-1]*1)/16;

}

}

cout << "done.\ndetecting edges... " << endl;

//detect edges, setting color value to 256 out of a possible 255 if an edge pixel is found to signify an edge pixel

for(int y = 2; y < height-2; y++){

 for(int x=2; x < width-2; x++){

if(y>0){

int gx = smoothed[y][x-1]*(-2)+smoothed[y-1][x-1]*(-1)+smoothed[y+1][x-1]*(-1)+smoothed[y+1][x]*(2)+smoothed[y+1][x-1]*(1)+smoothed[y+1][x+1]*(1);

int gy = smoothed[y-1][x]*(-2)+smoothed[y-1][x-1]*(-1)+smoothed[y-1][x+1]*(-1)+smoothed[y+1][x]*(2)+smoothed[y+1][x-1]*(1)+smoothed[y+1][x+1]*(1);

if(abs(abs(gx)+abs(gy))>edge_threshhold){

edges[y][x] = 256;

}

}

}

}

//cout << "done.\nfilling hough space... " << endl;

int tx,ty;

//initialize array to store detected circles

for(int y = 0; y < height; y++){

for(int x=0; x < width; x++){

circles[y][x] = 0;

}

}

cout << "done.\ndetecting circles... " << endl;

//use hough space accumulator to detect circles

for(int k = 0; k < 11; k++){

cout << RADIUS << endl;

//fill hough space

for(int y = 0; y < height; y++){

 for(int x=0; x < width; x++){

 if(edges[y][x] == 256){

 //bool visited[height][width];

 for(int a = 0; a < NUMANGLES; a++){

 ty = y+(int)(sin(((double)a/(double)NUMANGLES)*2.0*3.14159)*RADIUS);

 tx = x+(int)(cos(((double)a/(double)NUMANGLES)*2.0*3.14159)*RADIUS);

 if(ty<height && ty>-1 && tx<width && tx>-1){

 accumulator[ty][tx]++;

}

}

}

}

}

//left side of image (left wheel)

for(int y = 0; y < height; y++){

 for(int x = 0; x < width/2; x++){

if(accumulator[y][x]>circle_threshold && accumulator[y][x]>bestthreshold_l){

bestthreshold_l = accumulator[y][x];

bestx_l = x;

besty_l = y;

best_radius_l = RADIUS;

}

}

}

//right side of image (right wheel)

for(int y = 0; y < height; y++){

 for(int x = width/2; x < width; x++){

 if(accumulator[y][x]>circle_threshold && accumulator[y][x]>bestthreshold_r){

 bestthreshold_r = accumulator[y][x];

 bestx_r = x;

 besty_r = y;

best_radius_r = RADIUS;

 }

 }

 }

RADIUS = RADIUS - 1.0;

}

//marking circle in output image

for(int a = 0; a < NUMANGLES; a++){

 ty = besty_l+(int)(sin(((double)a/(double)NUMANGLES)*2.0*3.14159)*best_radius_l);

 tx = bestx_l+(int)(cos(((double)a/(double)NUMANGLES)*2.0*3.14159)*best_radius_l);

if(ty<height && ty>-1 && tx<width && tx>-1)

circles[ty][tx] = 1;

}

for(int a = 0; a < NUMANGLES; a++){

 ty = besty_r+(int)(sin(((double)a/(double)NUMANGLES)*2.0*3.14159)*best_radius_r);

 tx = bestx_r+(int)(cos(((double)a/(double)NUMANGLES)*2.0*3.14159)*best_radius_r);

 if(ty<height && ty>-1 && tx<width && tx>-1)

 circles[ty][tx] = 1;

}

//draw square over detected region of interest

for(int k = 0; k < bestx_r-bestx_l; k++){

circles[(besty_r+besty_l)/2-abs(bestx_r-bestx_l)/2][bestx_l+k] = 1;

circles[(besty_r+besty_l)/2][bestx_l+k] = 1;

circles[(int)((double)(-1.0)*abs(bestx_r-bestx_l)/2.0*(double)((double)k/(double)(bestx_r-bestx_l))+(double)(besty_r+besty_l)/2.0)][bestx_l] = 1;

circles[(int)((double)(-1.0)*abs(bestx_r-bestx_l)/2.0*(double)((double)k/(double)(bestx_r-bestx_l))+(double)(besty_r+besty_l)/2.0)][bestx_r] = 1;

}

cout << "done.\nbeginning output... " << endl;

//output image of hough space

fstream outh;

outh.open("houghspace.pgm", fstream::out);

outh << "P2" << endl;

outh << "#generated by Andrew Stebbins" << endl;

outh << width << " " << height << endl;

outh << circle_threshold << endl;

for(int y = 0; y < height; y++){

 for(int x=0; x < width; x++){

outh << accumulator[y][x] << endl;

 }

}

outh.close();

/*

//output the smoothed grayscale version of the original image

fstream out1;

out1.open("output.pgm", fstream::out);

out1 << "P2" << endl;

out1 << comment << endl;

out1 << width << " " << height << endl;

out1 << range << endl;

for(int y = 0; y < height; y++){

 for(int x = 0; x < width; x++){

out1 << smoothed[y][x] << endl;

}

}

out1.close();

*/

comment = "#created by Andrew Stebbins";

/*

//output the detected edges

fstream out2;

out2.open("edges.ppm", fstream::out);

out2 << magicnum << endl;

out2 << comment << endl;

out2 << width << " " << height << endl;

out2 << range << endl;

for(int y = 0; y < height; y++){

for(int x = 0; x < width; x++){

//if edge pixel, make red

if(edges[y][x] == 256){

out2 << 255 << endl;

 out2 << 0 << endl;

 out2 << 0 << endl;

}

else{

out2 << 0 << endl;

out2 << 0 << endl;

out2 << 0 << endl;

}

}

}

out2.close();

*/

//output the detected circles

fstream outl;

outl.open("circles.ppm", fstream::out);

outl << magicnum << endl;

outl << comment << endl;

outl << width << " " << height << endl;

outl << range << endl;

for(int y = 0; y < height; y++){

 for(int x=0; x < width; x++){

 //if pixel is on a detected circle, make red

 if(circles[y][x] == 1){

 outl << 255 << endl;

 outl << 0 << endl;

 outl << 0 << endl;

 }

 else{

outl << ppm[y][x].r << endl;

 outl << ppm[y][x].g << endl;

 outl << ppm[y][x].b << endl;

 }

 }

}

outl.close();

cout << "done.\n";

return 0;

}

sift_keypoints.cpp converts a color image to a smoothed, grayscale image, and locates all scale-space extrema, i.e. SIFT keypoint candidates:

#include <iostream>

#include <string>

#include <iomanip>

#include <fstream>

#include <cmath>

using namespace std;

//struct for holding rgb color values

typedef struct {

int r,g,b;

} rgb;

void gaussian(int** img, int width, int height, double sigma){

int** img_orig = new int*[height];

for(int k = 0; k < height; k++){

 img_orig[k] = new int[width];

for(int c = 0; c < width; c++){

img_orig[k][c] = img[k][c];

}

}

int kwidth = (int)(sigma*6.0);

kwidth += 1;

double ksum = 0.0;

double** kernel = new double*[kwidth];

for(int y = 0; y < kwidth/2+1; y++){

kernel[y] = new double[kwidth];

for(int x = 0; x < kwidth/2+1; x++){

kernel[y][x] = (1.0/(2.0*3.14159*sigma*sigma))*pow(2.71828183, (-1.0*((abs(x-kwidth+1)*(abs(x-kwidth+1))+(abs(y-kwidth+1))*(abs(y-kwidth+1)))/(2*sigma*sigma))));

ksum += kernel[y][x];

}

for(int x = 0; x < kwidth/2; x++){

kernel[y][kwidth-x-1] = kernel[y][x];

ksum += kernel[y][x];

}

}

cout << "foo" << endl;

for(int y = 0; y < kwidth/2; y++){

kernel[kwidth-y-1] = new double[kwidth];

for(int x = 0; x < kwidth; x++){

kernel[kwidth-y-1][x] = kernel[y][x];

ksum += kernel[kwidth-y-1][x];

}

}

cout << "zomg" << endl;

for(int y = 0; y < height; y++){

for(int x = 0; x < width; x++){

double gsum = 0.0;

for(int ky = 0; ky < kwidth; ky++){

for(int kx = 0; kx < kwidth; kx++){

if((y-ky+kwidth/2) >= 0 && (y-ky+kwidth/2) < height && (x-kx+kwidth/2) >= 0 && (x-kx+kwidth/2) < width){

gsum += img_orig[(y-ky+kwidth/2)][(x-kx+kwidth/2)] * kernel[ky][kx];

}

}

}

img[y][x] = (int)(gsum/ksum);

}

}

cout << "lol" << endl;

delete img_orig;

}

int main(int argc, char *argv[]){

string magicnum, comment;

int height, width, range;

int edge_threshhold = 130;

int hysteresis_threshhold = 100;

ifstream in;

cout << "opening file: " << argv[1] << endl;

in.open(argv[1], ios::in);

getline(in, magicnum);

if(!(magicnum == "P3")){

 cout << "error: image is not of type PPM!" << endl;

 return 0;

}

getline(in, comment);

in >> width;

in >> height;

in >> range;

cout << "width: " << width << " height: " << height << " range: " << range << endl;

rgb** ppm = new rgb*[height];

for(int k = 0; k < height; k++)

ppm[k] = new rgb[width];

int** pgm = new int*[height];

for(int k = 0; k < height; k++)

 pgm[k] = new int[width];

int** smoothed = new int*[height];

for(int k = 0; k < height; k++)

 smoothed[k] = new int[width];

int** smoothed2 = new int*[height];

for(int k = 0; k < height; k++)

 smoothed2[k] = new int[width];

int** edges = new int*[height];

for(int k = 0; k < height; k++)

 edges[k] = new int[width];

int** gx = new int*[height];

for(int k = 0; k < height; k++)

 gx[k] = new int[width];

int** gy = new int*[height];

for(int k = 0; k < height; k++)

 gy[k] = new int[width];

cout << "reading file... " << endl;

//read the input file into an array of rgb data structures

for(int y = 0; y < height; y++){

 for(int x=0; x < width; x++){

in >> ppm[y][x].r;

in >> ppm[y][x].g;

in >> ppm[y][x].b;

}

}

in.close();

cout << "done.\ngenerating grayscale image... " << endl;

//generate a grayscale representation of the input file

for(int y = 0; y < height; y++){

 for(int x=0; x < width; x++){

smoothed[y][x] = (ppm[y][x].r + ppm[y][x].g + ppm[y][x].b)/3;

}

}

cout << "done.\napplying gaussian filtering... " << endl;

//generate a flattened grayscale image using gaussian filtering

gaussian(smoothed, width, height, 8.0);

cout << "done.\ndetecting key points... " << endl;

//detect SIFT keypoints

int numcandidates = 0;

double k = 1.44;

/*

for(int y = 2; y < height-2; y++){

 for(int x = 2; x < width-2; x++){

if(abs(smoothed[y][x]-pgm[y][x])<3){

edges[y][x] = 255;

numcandidates++;

}

}

}*/

cout << numcandidates << endl;

cout << "done.\nbeginning output... " << endl;

//output the smoothed grayscale image with no edge superposition

fstream out1;

out1.open("output.pgm", fstream::out);

out1 << "P2" << endl;

out1 << comment << endl;

out1 << width << " " << height << endl;

out1 << range << endl;

for(int y = 0; y < height; y++){

 for(int x = 0; x < width; x++){

out1 << smoothed[y][x] << endl;

}

}

out1.close();

comment = "#created by Andrew Stebbins";

//output the detected points

fstream out2;

out2.open("output.ppm", fstream::out);

out2 << magicnum << endl;

out2 << comment << endl;

out2 << width << " " << height << endl;

out2 << range << endl;

for(int y = 0; y < height; y++){

for(int x = 0; x < width; x++){

/*

//if edge pixel, make red

if(edges[y][x] == 256){

out2 << 255 << endl;

 out2 << 0 << endl;

 out2 << 0 << endl;

}

else{

out2 << 0 << endl;

out2 << 0 << endl;

out2 << 0 << endl;

}

*/

out2 << edges[y][x] << endl;

out2 << edges[y][x] << endl;

out2 << edges[y][x] << endl;

}

}

out2.close();

cout << "done." << endl;

return 0;

}

2. Poster: Paste here new text you've added to your poster for 3rd quarter. Also describe or include new images, screenshots, or diagrams you are including for 3rd quarter. Have you reached any conclusions leading into 4th quarter that you can include in your poster for 3rd quarter?

Background: Much research has been done on the topic of generalized computer-based object recognition through the use of techniques such as the Viola-Jones face recognition algorithm and David Lowe's Scale Invariant Feature Transform (SIFT) keypoint matching method. Dlagnekov and Belongie, at the University of California, San Diego, have made an attempt at a car recognition system based off of region of interest (ROI) identification through the use of LPR and actual object recognition through the use of SIFT keypoint matching. They recorded a successful recognition rate of 89.5% on their query set of 38 images using a database of 790 images of known make and model.

Procedures and Methods: My program processes images of cars taken in side profile, unlike the rear angle from which all images used by Dlagnekov and Belongie were captured. Currently, my program can determine the proper ROI in an image by locating a car's wheels through the use of the Hough circle transform, and locate all SIFT keypoint candidates through the use of Gaussian smoothing and the difference-of-Gaussian function. The Hough transform-based circle detector makes multiple passes through Hough space for each possible car wheel radius, searching for the highest Hough space intensity values in each side of the image. Scale space extrema are detected by comparing the difference in the value of a pixel at one scale to the value of the pixel in the same place at another scale to that same value at all of the locations adjacent to that pixel in all current and neighboring scales. Once my program is able to locate and describe SIFT keypoints, it will make a best guess as to the make and model of the car in the input image based on the number of matching SIFT keypoints between the input image and each image in the database of cars of known make and model.

I have also developed a separate program to receive and process real-time input from a USB webcam attached to a Linux computer. Once I have completed my implementation of the SIFT keypoint matching algorithm, I intend to combine it with this program to produce a program with a GUI that allows the user to freeze any given frame and detect the model and make of each car located within the camera's view at that particular moment. If I have time, I also intend to combine motion detection with wheel detection to enhance the accuracy of my ROI detection algorithm.

Results: The various components of my program currently perform as expected, accurately detecting lines, recognizing handwritten characters, and displaying video input. The frame rate of my streaming input viewer is somewhat low, a problem which will have to be addressed before accurate motion detection can be attempted. I hope to be able to test an assembled version of my final program on short video segments of cars in motion by the end of the third quarter.

3. Presentation slides: Paste here new text you've added to your presentation for 3rd quarter. Also describe or include new images, screenshots, or diagrams you are including for 3rd quarter. Have you reached any conclusions leading into 4th quarter that you can include in your presentation for 3rd quarter?

Background:

Object detection techniques

-SIFT keypoint matching

Region of Interest Identification:

Hough circle transform

-multiple passes

[image: image1.jpg]

[image: image2.png]

[image: image3.png]

SIFT Keypoint Matching

Keypoint detection

-scale-space extrema detection

-keypoint localization

-orientation assignment

-keypoint descriptor

[image: image4.png]

SIFT Keypoint Matching:

Matching to database images

-nearest-neighbor identification based on keypoint description

Expectations:

Side profile car recognition and categorization

-invariant to lighting changes, also small amounts of rotation, translation

Multiple cars

Moderate detection speed

Progress:

Region of interest identification

-Hough transform circle detector

Scale space extrema detection

-Gaussian smoothing function and difference-of-Gaussian

Plan for Fourth Quarter:

Finish implementation of SIFT keypoint detection algorithm

Test recognition accuracy on database of testing images taken from TJ parking lot

4. Research paper: Paste here new text or describe/summarize new text you've added to your paper for 3rd quarter. Also describe or include new images, screenshots, or diagrams you are including in your paper for 3rd quarter. Have you reached any conclusions leading into the 4th quarter that you are including in your paper? What have you added to you bibliography?

Added to “Background:”

Much research has been done on the general topic of computer-based

object recognition, resulting in the development of such techniques as the

Viola-Jones face recognition algorithm and David Lowe’s Scale Invariant

Feature Transform (SIFT) keypoint matching object classification method.

Dlagnekov and Belongie, at the University of California, San Diego, have

made an attempt at a car recognition system based off of region of interest

(ROI) identification through the use of LPR and actual object recognition

through the use of SIFT keypoint matching. They recorded a successful

recognition rate of 89.5% on their query set of 38 images using a database of

790 images of known make and model.

Newly added section 3, “Region of Interest Identification:”

The purpose of identifying the region of interest in an image that contains

a car is to remove background clutter and make it easier for the object

classification algorithm to correctly recognize key features. My program only

analyzes cars from a side profile perspective, so centering the ROI around

the license plate as Dlagnekov et al.[5] did is not an option. Instead, my

program uses a Hough transform-based circle detector to locate the front and

back wheels of the car, and then uses those coordinates to center the ROI

around the body of the car. Movement tracking is also a commonly used and

reasonably accurate method for obtaining such a region of interest[5], and I

may combine this method of ROI detection with my wheel detector if I have

time at the end of the fourth quarter.

Newly added section 4, “Object Recognition:”

I intend to use David Lowe’s SIFT keypoint matching method to correctly

identify the cars located inside the detected ROI in a given input image.

SIFT keypoint detection consist of scale space extrema detection, keypoint

localization, orientation assignment, and creation of a keypoint descriptor[6].

Currently, my program is able to locate all SIFT keypoint candidates through

the use of Gaussian smoothing and the difference-of-Gaussian function. Scale

space extrema are detected by comparing the difference in the value of a pixel

at one scale to the value of the pixel in the same place at another scale to

that same value at all of the locations adjacent to that pixel in all current and

neighboring scales. Once my program is able to locate and describe SIFT

keypoints, it will make a best guess as to the make and model of the car in

the input image based on the number of matching SIFT keypoints between

the input image and each image in the database of cars of known make and

model.

 I have developed a separate program to receive and process real-time input

from a USB webcam attached to a Linux computer. Once I have completed

my implementation of the SIFT keypoint matching algorithm, I intend to

combine it with this program to produce a program with a GUI that allows

the user to freeze any given frame and detect the model and make of each

car located within the camera’s view at that particular moment.

 I have also looked into neural networks as an intuitive, learning-based

method of automobile classification. My conclusion was that they would not

be appropriate for an object categorization task of such complexity. The set

of training example images would need to be immense for a neural network-

based automobile recognition program to attain any acceptable level of ac-

curacy.

Added to “Results and Discussion

:”

Unfortunately, my project does not yet exist in the form of a single program

able to be tested on its ability to detect and recognize automobiles in still

images or streaming video feeds. I have yet to complete my implementation

of the SIFT keypoint identification and matching algorithm, though I am

confident that this will be achieved within the next few weeks. The frame

rate of my streaming input viewer is somewhat low, a problem which will

have to be addressed before motion detection can be considered as a possible

method of ROI location in addition to wheel detection. I hope to be able

to test an assembled version of my final program on a database of testing

images composed of pictures of cars from the TJ student parking lot by the

end of the fourth quarter.

5. Running version of your project. Include new analysis, and how your research has changed or evolved or grown or expanded during 3rd quarter. Specifically what have you done this quarter.

My program currently consists of 4 primary components: the streaming video input GUI, Hough transform-based ROI location program, and SIFT keypoint-based object recognition program. The first two components currently work as expected, and I am still working on my code for objection recognition. This quarter I created the ROI detection and object recognition programs and shifted the primary focus of my research to SIFT keypoint-based object recognition.

6. What is your focus for 4th quarter for the final completion of your program and project?

My focus for the 4th quarter is the completion of my implementation of SIFT keypoint object
recognition algorithm and the unification of the various parts of my project (camera input reading, object recognition) under a single GUI.

