
Systems Lab Research Project Code Analysis
The Applications of Image Processing

Techniques to Sign Language Recognition

Byron Hood

Version 0.1

October 31, 2007

1

Data Structure Documentation

line Struct Reference

Data Fields
1 int start_x
2 int start_y
3 int end_x
4 int end_y
5 double slope

Detailed Description

The structure in which the program stores information about a line as it goes about detecting lines
in an image which has previously gone through edge-detection. The fields are optimized for later
usability by the line-finding AI.

Field Documentation

int line::start_x

int line::start_y

int line::end_x

int line::end_y

double line::slope

ts Struct Reference

Data Fields
6 struct timeval start
7 struct timeval end
8 struct timeval inactive
9 int status

Detailed Description

A structure to hold data about a span of time. This includes data about when the time was started,
when it stopped (if this has occurred yet), and how much time the timer has been inactive (if it
has been stopped and then restarted).

2

Field Documentation

struct timeval ts::start [read]

The starting time of the timer.

struct timeval ts::end [read]

The stopping time of the timer.

struct timeval ts::inactive [read]

The amount of time a timer has been inactive.

int ts::status

The timer’s status, such as “started” or “stopped”

3

Syslab Tech Project 2007 File Documentation

project/capture.c File Reference
#include <asm/types.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/videodev.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "timer.c"

Functions
10 int save_pnm (char *buf, int x, int y, int depth)
11 int main (int argc, char *argv[])

Variables
12 struct video_picture grab_pic
13 struct video_capability grab_cap
14 struct video_channel grab_vid
15 struct video_mmap grab_buf
16 struct video_mbuf grab_vm
17 unsigned int grab_fd
18 unsigned int grab_size
19 unsigned int frame
20 unsigned int done = 1
21 unsigned int framecount = 0
22 unsigned char * grab_data
23 unsigned char * buf

Function Documentation

int main (int argc, char * argv[])

The function which grabs frames and instructs the second method to save them. For the sake of
simplicity, this has not received a header file yet (but will once I perfect it).

int save_pnm (char * buf, int x, int y, int depth)

A very simple function to save in the PNM standard formats, *.ppm and *.pgm (the first is color
whereas the second is grayscale).

4

project/crop.c File Reference
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include "log.c"

Defines
24 #define maxsize 1000

Functions
25 int * crop_rows (int *image, int rows, int cols)
26 int * crop_cols (int *image, int rows, int cols)
27 int * _crop_cols (int image[maxsize][maxsize], int rows, int cols)
28 int is_in (int *arr, int len, int val)
29 void seg (int sig)
30 int main (int argc, char *argv[])

Variables
31 int newrows
32 int newcols

Define Documentation

#define maxsize 1000

Definition at line 22 of file crop.c.

Function Documentation

int * _crop_cols (int image[maxsize][maxsize], int rows, int cols)

Crop all of the unused columns in the image (those that are entirely black).

int * crop_cols (int * image, int rows, int cols)

An incomplete optimization of the above cropping mechanism.

int * crop_rows (int * image, int rows, int cols)

Crop all of the rows in an image (where the entire row is balck).

int is_in (int * arr, int len, int val)

If a value is in the first len elements of array arr.

int main (int argc, char * argv[])

Execute the program to crop an image down to size for optimization purposes.

5

project/edge_detect.c File Reference
#include <stdio.h>
#include <math.h>
#include <string.h>

Defines
33 #define maxsize 1000

Functions
34 void edge_detect (int *, int *, int, int)
35 void __edge_detect__ (int image1[maxsize][maxsize], int image2[maxsize][maxsize], int rows,

int cols)
36 void seg (int)

Variables
37 FILE * thefile

Define Documentation

#define maxsize 1000

The maximum dimensions of an image. Anything larger will be truncated. Therefore it is adivsable to
use a 640x480 webcam.

Function Documentation

void __edge_detect__ (int image1[maxsize][maxsize], int image2[maxsize][maxsize], int
rows, int cols)

An old, deprecated edge-detection function in there for backwards compatibility.

void edge_detect (int * image1, int * image2, int rows, int cols)

This runs the Robert's Cross edge detection algorithm on the image data in the first argument and
stores the result in argument two. Robert's cross looks something like this:

value = sqrt((left - right)^2 + (top - bottom)^2)

Where left, right, top, and bottom refer to pixels to the left, to the right, above, and below the current
pixel, respectively.

This method is highly effective and balances good edge detection with eliminating most of the
unnecessary noise.

project/find_lines.c File Reference
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "log.c"
#include "timer.c"

6

Data Structures
38 struct line

Defines
39 #define maxsize 1000
40 #define HIGHLIGHT_THRESHOLD 20
41 #define round(x) ((x-floor(x) < 0.5) ? (int)floor(x) : (int)ceil(x))

Enumerations
42 enum boundary { OUT_BOUNDS_ABOVE, OUT_BOUNDS_BELOW, IN_BOUNDS }

Functions
43 int check_bounds (int, int, int)
44 void branch_out (int, int, int, line *)
45 int detect_lines (int rate, line lines[10000])
46 int is_highlighted (int)
47 void print_lines (int lc, line lines[10000])
48 int main (int argc, char *argv[])

Variables
49 enum boundary b
50 char * infilename
51 FILE * infile
52 int image [maxsize][maxsize]
53 int rows
54 int cols
55 int maxpixel
56 char format [3]

Define Documentation

#define HIGHLIGHT_THRESHOLD 20

The minimum brightness of a pixel to be considered "on"

#define maxsize 1000

The maximum dimensions of an image. Anything larger will be truncated.

#define round(x) ((x-floor(x) < 0.5) ? (int)floor(x) : (int)ceil(x))

Abusing the preprocessor to define a really simple method ;-)

Enumeration Type Documentation

enum boundary

Used for boundary checking for the branch_out() function. Each value describes one of the three
possible conditions of the index about to be used.

Enumerator:

OUT_BOUNDS_ABOVE

7

OUT_BOUNDS_BELOW
IN_BOUNDS

Function Documentation

void branch_out (int row, int col, int rate, line * result)

Once a point is determined to be highlighted, branch out from that point at all thetas and try to find any
lines which emanate from it.

Input: int row: The current row coordinate in the matrix. int col: The current column coordinate in the
matrix. int rate: The rate at which to cycle through thetas looking for lines (given in degrees). Best set
to somewhere between 5 and 10. Returns: A very specialized array which contains the coordinates of
the starting and ending points of the line. The array is four integers long.

int check_bounds (int d, int cur, int tot)

Prototypes so that I can keep track of everything.

The function to help the program constrain the coordinates it uses within the image matrix to make
sure no negative indices are ever used, something which results in the dreaded seg fault.

int detect_lines (int rate, line lines[10000])

The actual line detector. The general method is to iterate through angles at a given rate (best is 5-10
degrees) and look through the image for lines at that particular angle.

int is_highlighted (int item)

Whether or not a given point is “on” or “off”

int main (int argc, char * argv[])

Execute the line-finding program.

void print_lines (int lc, line lines[10000])

Print out any lines found.

project/log.c File Reference

Enumerations
57 enum { LEVEL_DEBUG, LEVEL_OUTPUT, LEVEL_WARNING, LEVEL_ERROR,

LEVEL_FATAL }

Functions
58 void die (char *message)
59 void debug (char *message)
60 void error (char *message)
61 void fatal (char *message)
62 void finish ()
63 void log_file (int level, char *message)
64 void out (char *message)
65 void sys_error (int err, void(*func)(char *))

8

66 void warn (char *message)
67 void warning (char *message)

Variables
68 FILE * logfile
69 int fileoff = 0
70 static int errorcount = 0
71 static int warncount = 0

Enumeration Type Documentation

anonymous enum

The various levels of output which this program handles, from simple debug or verbose output to fatal
errors such as missing arguments. Each has its own particular species of output and also registers
differently in the log file to clarify which errors or messages were related to a crash or failure, if
necessary.

Enumerator:

LEVEL_DEBUG
LEVEL_OUTPUT
LEVEL_WARNING
LEVEL_ERROR
LEVEL_FATAL

Definition at line 56 of file log.h.

Function Documentation

void debug (char * message)

The method to output debug information, especially when attempting to pinpoint the sources of errors
and segmentation faults. This prints out a notice and also logs it to the runtime log file.

Input: char* message: the debugging message designed to help with crashes.

void die (char * message)

The method to call when an error destabilizes the program or interrupts the flow of information.
Basically, if an error is serious enough, then this method must be called to prevent the program from
doing any damage to the operating system or files. This method outputs and saves to disk an error
message and then exits.

Input: char* message: A pointer to any error message to include

void error (char * message)

The method to call for a non-fatal error, which does not jeopardize the operation of the program or
threaten to destabilize it (and perhaps the system). It prints out an error message and ups the error
counter, but does not kill the program.

Input: char* message: theerror message which should gave a hint about cause of the error for future
reference and fixing.

9

void fatal (char * message)

An alias for die() above. In case I forget to call die() and try the next most logical choice.

Input: char* message: the message passed along to die() to initiate the process associated with a fatal
error.

void finish ()

When we are ready to exit, call this to report the overall error total and save this to disk, then perform
any other cleanup operations that are necessary. However, do not exit, but leave the exiting program or
method to decide the manner of exit (e.g. EXIT_SUCCESS or EXIT_FAILURE).

No input or return value.

void log_file (int level, char * message)

The general purpose method which takes a message and error level, and writes this to the log in the
appropriate manner. The advantage of going this way is having a standard way of writing everything to
the log file so that one change changes the entire format.

Input: (1) int level: The level of output, from LEVEL_FATAL representing a total program collapse to
LEVEL_DEBUG indicating that it is only printed if debug is enabled. (2) char* message: the message
being written to the log file.

void out (char * message)

This method handles any official program output so that this is logged in the runtime log file and so
that it looks decent on the screen as it comes out.

The idea behind doing this here is to standardize any appearances for output used. On the whole, this
should be sparing, and instead it is better to use debug() and and warn() unless the message is truly
program output (such as a letter which has been determined).

Input: char* message: The message to be printed to standard output in addition to the log file.

void sys_error (int err, void(*)(char *) func)

This function takes care of any business with errno and system errors so that the other programs aren't
burdened by unnecessary details on logging.

Input: (1) int err: The number of the error. Often, but not always, this is errno. (2) void (*func)(char*):
the function to call, be it warn(), die(), or a simple error(). this is to allow the program the maximum
choice in error severity.

void warn (char * message)

This function exists to warn the user of a situation which could cause errors in the future. This does not
describe anything going wrong yet, but circumstances are similar to situations in which things could
fail.

Input: char* message: the warning message to give the user to warn them that circumstances which
could bring about a crash exist.

void warning (char * message)

An alias for warn(), in case I attempt to call an alternate warning function.

Input: char* message: the message to be passed along to warn().

10

project/main.c File Reference
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "log.c"
#include "timer.c"
#include "edge_detect.c"

Defines
72 #define maxsize 1000

Functions
73 int main (int argc, char *argv[])

Variables
74 char * infilename
75 char * outfilename
76 FILE * infile
77 FILE * outfile
78 int image1 [maxsize][maxsize]
79 int image2 [maxsize][maxsize]
80 int rows
81 int cols
82 int maxpixel
83 char format [3]

Define Documentation

#define maxsize 1000

The maximum dimensions of an image. Anything larger will be truncated. Therefore it is adivsable to
use a 640x480 webcam or to automatically scale images down. this number is also a security measure:
otherwise the program may end up taking too much memory and/or processor power.

Function Documentation

int main (int argc, char * argv[])

The main execution method, called to start the entire program. This type of framework allows the
program to be very flexible in terms of multiple processes running simultaneously, the order of how
things are done, etc.

project/timer.c File Reference
#include <stdio.h>
#include <time.h>

Data Structures
84 struct ts

11

Enumerations
85 enum { TIMER_STARTED, TIMER_STOPPED, TIMER_RESTARTED, TIMER_NEW }

Functions
86 ts init_timer ()
87 ts start_timer (ts *timer)
88 ts stop_timer (ts *timer)
89 ts restart_timer (ts *timer)
90 long running_time (ts *timer)
91 long total_time (ts *timer)

Enumeration Type Documentation

anonymous enum

The possible values of the status variable for a timer, so that the following methods can determine their
behavior.

Enumerator:

TIMER_STARTED
TIMER_STOPPED
TIMER_RESTARTED
TIMER_NEW

Function Documentation

ts init_timer ()

Initialize the timer with default values. This is the best way, as it uses the defaults which ensure that
errors will not happen.

ts restart_timer (ts * timer)

Restart a previously stopped timer and calculate the elapsed time when the timer was inactive, so that a
total time and also a running time can be calculated with the same timer.

long running_time (ts * timer)

Calculate the total amount of time which the timer has been running (not when it was stopped).

ts start_timer (ts * timer)

"Start" the timer by setting the start_time variable to the current time. This will serve as a reference
when the program needs an elapsed time later on.

ts stop_timer (ts * timer)

Stop the timer by recording the time of the command and placing this in the end_time variable.
Also, set its status to stopped, so that other timer-based methods can execute accordingly.

long total_time (ts * timer)

Calculate the total amount of time since the timer was first started, regardless when it was stopped
and/or started.

12

project/xml_parse.c File Reference

Defines
92 #define maxlength 5000

Enumerations
93 enum tags { TAG_LETTER, TAG_OPEN, TAG_CLOSE, TAG_NONE }
94 enum values { VALUE_TEXT, VALUE_TAGS, VALUE_NONE }

Functions
95 int is_tag (char *test)
96 int is_value (char *test)
97 char * next_tag ()
98 char * next_value (char *tag)
99 char * parsexmlfile (char *filename)
100 void set_letter (char *tag, char *value)
101 int strpos (char *str, char ch)

Variables
102 FILE * infile
103 char * content

Define Documentation

#define maxlength 5000

The maximum length of certain strings, set high enoug hto be safe from buffer overflows but low
enough to not waste memory.

Enumeration Type Documentation

enum tags

A set of values which represent the possible types of tags. This is handy when trying to classify a string
as either a tag or a value so that it can be appropriately parsed. The separate values are intended to
distinguish general tags which compose the majority of XML data read in, such as <thumb> or
<motion>, with unusual tags like <letter>.

Enumerator:

TAG_LETTER
TAG_OPEN
TAG_CLOSE
TAG_NONE

enum values

A set of values which represent possible types of tag values. They come in useful when classifying
values between <hand> and <motion> type tags.

Enumerator:

VALUE_TEXT
VALUE_TAGS

13

VALUE_NONE

Function Documentation

int is_tag (char * test)

The function which tests a string for the `<' and `>' characters.

A method to test whether or not a string is a tag. This returns one of a set of values, describing what
sort of tag the string is (or that the string is not a tag at all). For those values, see the enum above.

int is_value (char * test)

The method to determine whether or not a given string is a value (often this is enclosed within an
opening and a closing tag). If yes, then the value type (either a set of tags or a string) is returned. If not,
then a value which indicates as much is returns.

char* next_tag ()

The function to find the next XML tag in the string, after a certain point. It returns a string of the tag
and its value.

char* next_value (char * tag)

The method which returns the text in the content pointer up to the next closing tag for the opener
specified.

char* parsexmlfile (char * filename)

The main method to parse an XML file (at least one of the complexity level used to store hand
information). This calls all of the appropiate tag find mechanisms and parses the file into a computer-
readable format.

the order of tags after this is as follows: 1) orientation -- either "forward" or "sideways" 2) thumb-
pinky -- positions of these fingers. choices are documented in hands/spec.xml. 3) motion -- to be
implemented later, for letters like 'j' and 'z'

void set_letter (char * tag, char * value)

Propose a letter to the AI.

int strpos (char * str, char ch)

Find the position in a string of a character. This is functionality which has annoyed me by being absent
from built-in C libraries.

14

	Systems Lab Research Project Code Analysis
	The Applications of Image Processing
	Techniques to Sign Language Recognition
	Byron Hood
	Version 0.1
	October 31, 2007

