COMPUTER SYSTEMS RESEARCH
Portfolio Update Report 2nd Quarter 2007-2008
Research Paper, Poster, Slides, and Analysis of your program. Looking ahead – Plan for 3rd Quarter

Name: _______Tom Smilack___________, Period: _3_, Date: ____1/24/08_

Project title or subject: Physics sim

Computer Language: _Java_

Describe the changes/updates you have made to your research portfolio for 2nd quarter. Also describe your plan for 3rd quarter

1. Coding: attach new code that you wrote or modified 2nd quarter. Describe the purpose of this code in terms of your project's development

CSResearch:

static void main(java.lang.String[] args) //sets up JFrame and adds PhysSim and PhysControls
PhysSim:

Void fforward() //fastforwards
void freverse() //fast rewind
void paintComponent(java.awt.Graphics g) //draw buffer to screen
void pause() //pause sim
void play() //normal speed forward
void reset() //delete all objects
void resume() //same as play
void reverse() //normal speed backward
void setdt(double newdt) //change timestep
void setInputMethod(java.lang.String method) //switch input method
PhysControls //contains buttons for speed and input method
SimObject:

abstract void checkWallCollision() //check if there is a wall collision
abstract void draw(java.awt.Graphics g) //draw object on buffer
double get(java.lang.String var) //get a var such as x,y,vx,vy,m,I,etc.
java.awt.Color getColor() //get color
void set(java.lang.String var, double value) //set a var
void step(double dt) //update position and velocity
Circle:

Void checkWallCollision() //implementation of abstract method
void draw(java.awt.Graphics g) //implementation of abstract method
double get(java.lang.String var) //adds radius and diameter to previously implemented method
void set(java.lang.String var, double value) //same as above
void wallCollide(int direction, int nX, int nY) //collide with wall
Rectangle:

Void checkWallCollision() //implementation of abstract method
void draw(java.awt.Graphics g) //implementation of abstract method
int[][] getCorners() //get corner points
void setCorners(int[][] c) //set corner points
void wallCollide(int corner, int nX, int nY) //collide with wall
Vector:

Vector add(Vector b)
Vector cross(Vector b) //cross product
double dot(Vector b) //dot product
double magnitude() //sqrt(x2 + y2 + z2)
Vector scale(double s) //V = s*V
void setx(double x_)
void sety(double y_)
void setz(double z_)
Vector subtract(Vector b)
java.lang.String toString() //“<x, y, z>”
double x()
double y()
double z()

UtilFunctions:

static int cartesianYToScreenY(double cart) //inverts y axis
static int cartesianYToScreenY(int cart) //same as above
static int[] cartesianYToScreenY(int[] cart) //same as above
static double dotProduct(double[] a, double[] b) //original dot product method, no longer used
2. Poster: Paste here new text you've added to your poster for 2nd quarter. Also describe or include new images, screenshots, or diagrams you are including for 2nd quarter. Have you reached any preliminary conclusions?

Input

Although users cannot draw in my

program, I wanted to employ an intuitive

input method. I came up with two

methods of creating circles and one of

creating rectangles. They are explained in

the diagrams below. An image of a cursor

signifies a click, while a line with an arrow

signifies dragging.
Preliminary Results

My program accurately represents

projectile motion and collisions with walls

without regard to friction, and with an

elasticity of one. Once I implement friction

and find a good way to determine the

elasticity value for each collision, my

simulations will seem much more realistic.
3. Presentation slides: Paste here new text you've added to your presentation for 2nd quarter. Also describe or include new images, screenshots, or diagrams you are including for 2nd quarter. Have you reached any preliminary conclusions?

Second quarter screenshot
Progress: rotation, GUI, input
Wall collision equations
Input Methods
GUI
4. Research paper: Paste here new text you've added to your paper for 2nd quarter. Also describe or include new images, screenshots, or diagrams you are including for 2nd quarter. Have you reached any preliminary conclusions? What have you added to you bibliography?

The two main sections of my program are the simulation and the objects.

The simulation is implemented both in the main program _le - that is, the

_le containing the main timer - and the objects themselves. The main _le

contains an ArrayList of SimObjects and at each timer iteration it calls the

step and draw functions of every object. Each object is an instance of a

subclass of the abstract class SimObject. SimObject de_nes step, which up-

dates the object's position and velocity when it is passed a double value dt.

It also includes a signature for the abstract method draw, which is imple-

mented di_erently in each subclass. The subclasses are currently Rectangle

and Circle.

Circles are easy to draw, but rectangles are more complicated because

their rotation changes the way they must be displayed. When the rectangle

is created, I determine the angle from the center to each corner. When

drawing the rectangle, I add its rotation to the angles already found and

multiply the sine and cosine of those by the distance from center to corner

to determine where to draw the points. Other polygons should be similar in

implementation to the rectangle, as I treat it more like a set of points than

as a rectangle. The method _llPolygon is used to display it.

Complex shapes will be implemented using pins and axles. Pins will

connect two shapes so that they stay together in the same position. To

achieve this I will create a ComplexObject class that will contain a list of

shapes that combine to form it. It will calculate collisions for every object in

it and apply forces to each object so that they move in unison. Axles will be

more complicated; I will have to give each object independent motion while

still keeping them attached to each other.

Collision detection has been the most complicated part of the project so

far. It is easy to _nd when something is past a wall - check every corner

to see if the x and y values are within an acceptable range. Determining

whether an object is in another is more di_cult. For circles, one must check

3

if the distance from the center C to the point P is less than or equal to the

radius: q

(Cx 􀀀 Px)2 + (Cy 􀀀 Py)2 _ r (1)

For rectangles, one must treat each edge as a line and determine whether the

point P is inside the area enclosed by each line. The equation of each line is

the point-slope equation with y isolated on the left. If the topmost point is

T, the leftmost is L, the bottommost is B, and the rightmost is R:

LT(x) =

Ty 􀀀 Ly

Tx 􀀀 Lx

(x 􀀀 Lx) + Ly (2)

LB(x) =

By 􀀀 Ly

Bx 􀀀 Lx

(x 􀀀 Lx) + Ly (3)

TR(x) =

Ry 􀀀 Ty

Rx 􀀀 Tx

(x 􀀀 Tx) + Ty (4)

BR(x) =

Ry 􀀀 By

Rx 􀀀 Bx

(x 􀀀 Bx) + By (5)

There is a collision when the following conditions are satis_ed:

Lx < Px < Rx (6)

Py < LT(Px) (7)

Py < TR(Px) (8)

LB(Px) < Py (9)

BR(Px) < Py (10)

In the event that the rectangle is straight up or to a side - in other words,

_%2 is 0, then T, L, B, and R are sides rather than points, and the equations

become simpler:

L < Px < R (11)

B < Py < T (12)

Wall collisions and object collisions are both resolved using similar equations.

When an object collides with a wall[1]:

va2 = va1 +

j

ma

n (13)

4

!a2 = !a1 +

(rap _ jn)

Ia

(14)

j = 􀀀(1 + e)vap1 _ n

1=ma + (rap _ n)2=Ia

; e = elasticity (15)

When two objects collide, there are two more equations, and the _nal one

changes[1]:

vb2 = vb1 􀀀
j

mb

n (16)

!b2 = !b1 􀀀
(rbp _ jn)

Ib

(17)

j = 􀀀(1 + e)vap1 _ n

1=ma + 1=mb + (rap _ n)2=Ia + (rbp _ n)2=Ib

(18)

There are currently three ways to create objects - two for circles and one

for rectangles. I tried to come up with as intuitive a way as possible so as to

make working with my program easy and uid. One way of inputting circles

is to click where the center will be and drag to create a radius. The other

way is to click an edge and drag the diameter. I implemented both because

I think that the second is easier, but I have seen the _rst used before. It

was harder to _gure out a way to create rectangles because there are more

variables than with circles. To create a rectangle, one clicks where a corner

will be, then clicks again for another corner and drags to _nish the rectangle.

After creating a shape, a dialog box appears to ask for the velocity and color

of the object. I would like to create something that does not interrupt the

ow as much, but I am not sure how to do so.

Input method selection is part of the GUI. The GUI is manifested in a

menubar with the ubiquitous File, Edit, and Help menus, and two rows of

buttons along the bottom. Although File, Edit, and Help are not the most

descriptive names for menus, considering what my project does, I chose them

because psychologically it would probably be more di_cult or distressing for

a user to have unfamiliar menus. They contain exit, reset, help, and about

commands. The rows of buttons along the bottom are speed controls and

input controls. The speed controls are fast rewind, rewind, pause, play, and

fast forward. They work except when collisions are involved, but I can _x

this by reversing parts of the equations. The input method controls are the

three I already mentioned, and will eventually include anchors, pins, axles,

and other polygons.

5

4 Preliminary Results

My program accurately represents projectile motion and collisions with walls

without regard to friction, and with an elasticity of one. While running, it

may seem that it is not accurate, but that is because people are judging it

with respect to their experiences, which take place in the real world, which

has many more forces than my program currently simulates. Once I imple-

ment friction and _nd a good way to determine the elasticity value for each

collision, my simulations will seem much more realistic.

6
5. Running version of your project. Include new analysis, how your research has changed or evolved or grown or expanded during 2nd quarter. Specifically what have you done this quarter.

I essentially rewrote the entire program from scratch. I created a new polymorphic representation of objects and changed the distribution of simulation methods among objects and classes.
6. What is your focus for 3rd quarter for your program and project?

Collisions between objects, contact forces, beginning complex objects (pins, axles), and anchors
