Project Description
Student: Tom Smilack, Computer Systems Lab 2007-2008

Title: An Interactive, User-driven Physics Simulator
Background:

I created this physics simulator for two purposes. The first was to give myself a thorough understanding of two dimensional physical interactions by putting them into code, and the second was to help physics students who were struggling with certain concepts by giving them an environment in which they could perform various experiments. When the user runs the program he or she is presented with a canvas on which shapes can be drawn using various tools, then the simulation takes over. The project was based on a program called ASSIST created by a team from the Massachusetts Institute of Technology in 2000-2001.

Description:

The canvas that the user starts with can be blank or it can have some objects hard-coded to appear automatically. Along with the canvas, there are a menu bar and two rows of buttons. The menu bar contains commands to exit the program or reset the simulation.

The first row of buttons controls the speed of the simulation. These buttons are fast rewind, rewind, pause, play, and fast forward, denoted by images of arrows that are commonly associated with each action.

The input buttons are two ways to create circles, one way to create rectangles, and the anchor controller. Circles can be created by clicking in the center and dragging to create the radius or clicking on an edge and dragging to create the diameter. Rectangles are created by clicking on one corner, then clicking on an adjacent corner to create the width and dragging to create the length. The final button controls whether or not an object is anchored; that is, whether or not it can move.
Collisions are the most important part of the project, but unfortunately I could not make them perfect. Collision detection between rectangles took a long time to perfect because I could not find a good algorithm for it. Eventually I devised my own: treat each edge as a line and determine whether or not a point lay between the lines opposite each other. Collision resolution was not completed because I could not figure out how to determine the exact direction of the line perpendicular to the point of collision, but certain effects of collisions can still be seen.
In writing my program I took advantage of polymorphism, a concept from Object-Oriented Programming where similar objects are linked to “parent” objects. I used it with shapes to allow me to treat all of them as the same at certain times even though circles and rectangles have different properties, and with input methods in order to switch between them quickly and easily.
