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Abstract

This project takes the ear decomposition algorithm for partitioning
maps and compares runtime efficiencies of a serial implementation
and a parallel implementation, both of which are written in XMT-C.
The number of nodes on the tested datasets span from 10 to 100.
The number of edges in each span from the minimum possible to the
maximum possible number of edges, where the minimum equals the
number of nodes and the maximum equals

(
N
2

)
. The point at which

the speed up of the parallel implementation equals the overhead lag
is estimated.

Keywords: Parallel Programming, XMT-C, Ear Decom-
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1 Introduction

Parallel programming is in no way a new concept. Unfortunately, for the
past fifty years more emphasis has been put in improving run-time for serial
programs. Now that hardware has almost hit its serial limit, it is turning
to parallel implementations; dual cores, for example, are becoming more
popular. More research will hopefully be put into parallel programming in
the near future.
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When serial algorithms do not parallelize well, new approaches are needed
to tackle problems. In the case of the Depth-First Search, it does not convert
to parallel well. The Ear Decomposition Search was created as the parallel
equivalent of the DFS.

2 Background

2.1 PRAM

PRAM refers to an abstract machine for designing algorithms in parallel.
This machine allows for an infinite number of processors that can each access
the same memory in uniform time. The four PRAM models include:

1. EREW - explicit read, explicit write

2. CREW - concurrent read, explicit write

3. ERCW - explicit read, concurrent write

4. CRCW - concurrent read, concurrent write

The CRCW can then be subdivided into three types- common, arbitrary,
and priority, depending on which processor writing is successful. The ERCR
PRAM model is almost never considered for obvious reseasons. The first
known implementation of CRCW PRAM is the the University of Maryland
A. James Clark School of Engineering’s ParaLeap prototype 64-core super-
computer.

2.2 XMT-C and ParaLeap

The language used on the ParaLeap is called XMT-C, eXplicit Multi-Threaded
C. Simply, the language is C with three extra methods, spawn, ps, and psm.
The spawn method allows the programmer to use multiple processors. The
spawn method takes two arguements, start and end. Then, end-start+1
threads are run, each with an identification number from start to end, in-
clusive, that can be referenced from the dollar sign. While any number of
processors can be called for, the computer only has 64 processors to run at
any given moment. Figure 1 shows how the spawn method allows the pro-
grammer to move from a serial state to a parallel state. The ps method, short
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Figure 1: The ease of changing from parallel to serial mode[1]

for prefix sum, allows for different threads to communicate with each other.
The ps method can only be called inside a spawn call. The ps method takes
two arguements, step and base. Step is a local integer set at either 1 or 0.
Base is a global variable of type psBaseReg. The ps method simultaneously
sets the value of step equal to base and increments base by step. Refer to [2]
for a definition of psm.[2]

ParaLeap is the nickname given to the University of Maryland A. James
Clark School of Engineering’s prototype supercomputer. The commands for
compiling and running a program in XMT-C on this machine are xmtgcc32
and xmtfpga, respectively. [2]

2.3 Ear Decomposition

The Ear Decomposition algorithm is used for partitioning different maps into
simple paths known as ears. Alone, the Ear Decomposition algorithm does
not provide much information. Instead, it is used as an intermediate step
for other algorithms. Some algorithms that use Ear Decomposition as an
intermediate step include: [3][5]

1. st-numbering

2. search for tri-connected components

3. planarity testing
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4. disjoint paths

The ear decomposition algorithm is inputed a biconnected, or bridgeless,
undirected graph G and outputs an array labeling each edge of G to the
cooresponding ear. The ear decomposition algorithm follows the five steps
below: [4]

1. Find a spanning tree T of G

2. Root T at an arbitrary vertex r, and compute level(v) and p(v), for
each vertex v 6= r, where level(v) and p(v) are the level and the parent
of v, respectively.

3. For each nontree edge e = (u, v), compute lca(e) = lca(u, v) and
level(e) = level(lca(e)), where lca is the least common ancestor of
nodes u and v. Set label(e) : = (level(e), s(e), where s(e) is the serial
number of e.

4. For each tree edge g, compute label(g).

5. For each nontree edge e, set Pe = e
⋃

g ∈ T |label(g) = label(e). Sort
Pes by label(e).

3 Procedures

Both the parallel and the serial Ear Decompositon algorithms were written
in XMT-C and run on the ParaLeap. They follow the steps explained in
section 2.1. The spanning tree was found using a Breadth First Search and
was rooted at the node whose value was zero.

The twleve datasets tested had N nodes, where N ∈ 10, 25, 50, 100. For
each N value, a dataset existed with E edges, where E = 25 and 75 percent of(

N
2

)
, a completely connected dataset, and N, the fewest number of edges while

maintaining biconnectivity. Input data was given in the form of four arrays,
vertices, antiparallel, degrees, and a two dimensional edges array. Because
random data is not garanteed to be bridgeless, a special program, makeData,
was written to create the datasets. First, the program connects all node in a
large ring, ensuring biconnectivity. Then, the program randomly adds edges
until the specified number are included. Lastly, the numbers from makeData
were run through memMapCreate32 in order to use in XMT environment.
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Figure 2: (a) The spanning tree with with dashed edges representing non-
tree edges. (b) An array showing edges and their cooresponding labels. (c)
The original data showing ears P0,P1, P2, and P3. Image taken from page
242 of [4]
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Each dataset was run three times and the clockcycles were averaged. The
dataset with 50 nodes and 75 percent edges caused an unknown error, but
can safely be assumed to run faster than its serial counterpart. Graphs and
Tables of clockcycles can be found in Appendix A.

4 Results and Conclusions

From Figures 3,4, and 5, one can see that as the percent of edges increases,
the number of nodes needed for the parallel program to outperform the serial
version decreases. Conversely, as the number of nodes increases, the number
of edges needed for the parallel program to outperform the serial version also
decreases. This fact can be seen from Figures 5, 6, 7, and 8.

A more efficient Depth First Search can be used when finding a spanning
tree to improve both parallel and serial runtimes. A special property of
ParaLeap disproportionately puts serial programs to a disadvantage. When
declaring an array, all values of the array begin as random numbers. Parallel
algorithms take constant time to set these values to zero, whereas serial
algorithms take linear time.

Further research should test values of N significantly greater than 64, the
number of processors on ParaLeap, to view the full extent of the parallel
speed-up. More research can be done to determine whether an increase in
ears has an effect on runtime of the Ear Decompositon Algorithm.
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A Graphs

Figure 3: Number of Edges Held Constant
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Figure 4: Number of Edges Held Constant

Figure 5: number of Edges Held Constant
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Figure 6: Number of Vertices Held Constant

Figure 7: Number of Vertices Held Constant
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Figure 8: Number of Vertices Held Constant

Figure 9: Number of Vertices Held Constant
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