
PRAM and the Ear Decomposition Algorithm

TJHSST Senior Research Project

2007-2008

Alex Valentin

The History of PRAM How XMT-C Works

PRAM refers to an abstract machine for
designing algorithms in parallel. It allows for an
infinite number of processors that can each
access the same memory in uniform time. The
first known implementation of PRAM is the
University of Maryland A. James Clark School
of Engineering's ParaLeap prototype 64-core
supercomputer.

The language used on this supercomputer is
called XMT-C, eXplicit Multi-Threaded C. Simply,
the language is C with two extra methods,
SPAWN and PS. The spawn method allows the
programmer to use multiple processors. While
any number of processors can be called for, the
computer only has 64 processors to run at any
given moment. The ps method, short for prefix
sum, allows for the different threads to
communicate with each other. The diagram below
shows how XMT-C code alternates between
serial mode and parallel mode.

Abstract

Procedures

Results

This project takes the ear decomposition algorithm for partitioning maps and compares runtime efficiencies of
different implementations. Four implementations are considered. Two implementations are run in a Parallel
Random Access Machine (PRAM), while the other two are run serially. For each of these modes, one
implementation uses only arrays and the other uses structures.

The four implementations were written in XMT-C, even though the serial versions do not use the
parallel capabilities. The Ear Decomposition was broken into three files, a main, span, and link. A
convert file was also created for converting the input data from arrays to structures, if applicable.
The span file finds a spanning tree of the data. The link file labels each edge and node with the
correct ear. The main file runs the span and link files and then prints the ear of each edge and
node.

Input data was given in the form of three arrays, vertices, degrees, and a two dimensional edges
array. This data was quickly made with the help of the memMapCreate32 program in the XMT
environment. Below is a visual of the hexagonal data set. Each data set was run on each of the
four implementations of ear decomposition four times. The clock cycle counts were averaged
and compared. The data is shown in Table 1 (which will arrive shortly.)

The four ear decomposition implementations to be tested are the parallel using structures, parallel
using only arrays, the serial using structures, and the serial using only arrays. The two parallel
implementations should run faster than the serial implementations for obvious reasons. Of the two
parallel implementations, the one using structures is expected to run slower because of the overhead
caused by using structures. Therefore, from fastest to slowest, the implementations are parallel
arrays, parallel structures, serial arrays, and serial structures.

Steps of Ear Decomposition

Input: A bridgeless, undirected graph G

Output: An ordered set of paths representing an ear
decomposition of G

begin

 1. Find a spanning tree T of G

 2. Root T at an arbitrary vertex r, and compute
level(v) and p(v), for each vertex v ≠ r, where level(v)
and p(v) are the level and the parent of v, respectively.

 3. For each nontree edge, e= (u, v), compute
lca(e)= lca(u,v) and level(e) = level(lca(e)). Set
label(e): (level(e), s(e)), where s(e) is the serial
number of e.

 4. For each tree edge g, computer label(g).

 5. For each nontree edge e, set Pe = {e} U {g |
label(g) = label(e) }. Sort the Pe’s by label(e).

end

PRAM and the Ear Decomposition Algorithm

TJHSST Senior Research Project

2007-2008

Alex Valentin

The History of PRAM How XMT-C Works

PRAM refers to an abstract machine for
designing algorithms in parallel. It allows for an
infinite number of processors that can each
access the same memory in uniform time. The
first known implementation of PRAM is the
University of Maryland A. James Clark School
of Engineering's ParaLeap prototype 64-core
supercomputer.

The language used on this supercomputer is
called XMT-C, eXplicit Multi-Threaded C. Simply,
the language is C with two extra methods,
SPAWN and PS. The spawn method allows the
programmer to use multiple processors. While
any number of processors can be called for, the
computer only has 64 processors to run at any
given moment. The ps method, short for prefix
sum, allows for the different threads to
communicate with each other. The diagram below
shows how XMT-C code alternates between
serial mode and parallel mode.

Abstract

Procedures

Results

This project takes the ear decomposition algorithm for partitioning maps and compares runtime efficiencies of
different implementations. Four implementations are considered. Two implementations are run in a Parallel
Random Access Machine (PRAM), while the other two are run serially. For each of these modes, one
implementation uses only arrays and the other uses structures.

The four implementations were written in XMT-C, even though the serial versions do not use the
parallel capabilities. The Ear Decomposition was broken into three files, a main, span, and link. A
convert file was also created for converting the input data from arrays to structures, if applicable.
The span file finds a spanning tree of the data. The link file labels each edge and node with the
correct ear. The main file runs the span and link files and then prints the ear of each edge and
node.

Input data was given in the form of three arrays, vertices, degrees, and a two dimensional edges
array. This data was quickly made with the help of the memMapCreate32 program in the XMT
environment. Below is a visual of the hexagonal data set. Each data set was run on each of the
four implementations of ear decomposition four times. The clock cycle counts were averaged
and compared. The data is shown in Table 1 (which will arrive shortly.)

The four ear decomposition implementations to be tested are the parallel using structures, parallel
using only arrays, the serial using structures, and the serial using only arrays. The two parallel
implementations should run faster than the serial implementations for obvious reasons. Of the two
parallel implementations, the one using structures is expected to run slower because of the overhead
caused by using structures. Therefore, from fastest to slowest, the implementations are parallel
arrays, parallel structures, serial arrays, and serial structures.

Steps of Ear Decomposition

Input: A bridgeless, undirected graph G

Output: An ordered set of paths representing an ear
decomposition of G

begin

 1. Find a spanning tree T of G

 2. Root T at an arbitrary vertex r, and compute
level(v) and p(v), for each vertex v ≠ r, where level(v)
and p(v) are the level and the parent of v, respectively.

 3. For each nontree edge, e= (u, v), compute
lca(e)= lca(u,v) and level(e) = level(lca(e)). Set
label(e): (level(e), s(e)), where s(e) is the serial
number of e.

 4. For each tree edge g, computer label(g).

 5. For each nontree edge e, set Pe = {e} U {g |
label(g) = label(e) }. Sort the Pe’s by label(e).

end

Below is a simple XMT-C program that takes array A of length N
and compacts its data into array B. N, Array A, and array B are
declared in the header data.h.

#include “data.h”
#include <xmtc.h>
psBaseReg base;
int main()
{
base = 0;
spawn(0, N-1)
{
int step = 1;
 if(A[$] != 0)
 {
 ps(step, base);
 B[step] = A[$];
 }
}//end spawn
}//end main

The spawn method takes two integer arguments, which identify the
range of the thread ids, inclusive. The id is referenced with the
dollar sign, $. The ps method also takes two arguments, a local
integer and a global psBaseReg. The local integer (step in the
example above) is set to the global psBaseReg (base in the
example above) and the psBaseReg is incremented by the size of
step. Essentially, the ps method acts as a global counter without
having to worry about concurrent writes.

