
Abstract

PRAM and the Ear Decomposition Algorithm

TJHSST Senior Research Project

2007-2008

Alex Valentin

This project takes the Ear Decomposition Algorithm for partitioning maps and compares runtime efficiencies of 
a serial implementation and a parallel implementation, both of which are written in XMT-C. The number of 
nodes on the tested datasets span from 10 to 100. The number of edges in each span from the minimum 
possible to teh maximum possible. The point at which the speed up of the parallel implementation equals the 
overhead lag is estimated.

PRAM and the Ear Decomposition Algorithm

TJHSST Senior Research Project

2007-2008

Alex Valentin
PRAM refers to an abstract machine for 
designing algorithms in parallel. It allows for an 
infinite number of processors that can each 
access the same memory in uniform time. The 
first known implementation of PRAM is the 
University of Maryland A. James Clark School 
of Engineering's ParaLeap prototype 64-core 
supercomputer.

The language used on this supercomputer is 
called XMT-C, eXplicit Multi-Threaded C. Simply, 
the language is C with two extra methods, 
SPAWN and PS. The spawn method allows the 
programmer to use multiple processors. While 
any number of processors can be called for, the 
computer only has 64 processors to run at any 
given moment. The ps method, short for prefix 
sum, allows for the different threads to 
communicate with each other. The diagram below 
shows how XMT-C code alternates between 
serial mode and parallel mode.

Below is a simple XMT-C program that takes array A of length N 
and compacts its data into array B. N, Array A, and array B are 
declared in the header data.h. 

#include “data.h”
#include <xmtc.h>
psBaseReg base;
int main(){
base = 0;
spawn(0, N-1){
     int step = 1;
     if( A[$] != 0)
     {
     ps(step, base);
     B[step] = A[$];
     }
}//end spawn
}//end main

The spawn method takes two integer arguments, which identify the 
range of the thread ids, inclusive. The id is referenced with the 
dollar sign, $. The ps method also takes two arguments, a local 
integer and a global psBaseReg. The local integer ( step in the 
example above) is set to the global psBaseReg (base  in the 
example above) and the psBaseReg is incremented by the size of 
step. Essentially, the ps method acts as a global counter without 
having to worry about concurrent writes.

The History of PRAM

Steps of Ear
Decompositon

Procedures

Both the parallel and the serial Ear Decompositon algorithms were written in XMT-C and run on the 
ParaLeap. The spanning tree was found using a Breadth First Search and was rooted at the node whose 
value was zero. The twleve datasets tested had N nodes, where N = 10, 25, 50, and 100. For each N value, a 
dataset existed with E edges, where E = 25% and 75% percent of the maximum number of edges, a 
completely connected dataset, and N, the fewest number of edges while maintaining biconnectivity. Input data 
was given in the form of four arrays: vertices, antiparallel, degrees, and a two dimensional edges array. 
Because random data is not garanteed to be bridgeless, a special program, makeData, was written to create 
the datasets. First, the program connects all node in a large ring, ensuring biconnectivity. Then, the program 
randomly adds edges until the specified number are included. Lastly, the numbers from makeData were run 
through memMapCreate32 in order to use in XMT environment.

Each dataset was run three times and the clockcycles were averaged. The dataset with 50 nodes and 75 
percent edges caused an unknown error, but can safely be assumed to run faster than its serial counterpart.

Results

The three graphs below show how the parallel implementation of the Ear Decompostion Algorithm 
becomes more efficient sooner as  the percentage of edges increases. When the number of edges equals the 
number of nodes (0%), the parallel version becomes more efficient with more than 50 nodes. When the 
number of edges equals 25% or higher, the number of nodes needed for the parallel to out-perform the serial 
code is 10.

A  more efficient Depth First Search can be used when finding a spanning tree to improve both parallel 
and serial runtimes. A special property of ParaLeap disproportionately puts serial programs to a disadvantage. 
When declaring an array, all values of the array begin as random numbers. Parallel algorithms take constant 
time to set these values to zero, whereas serial algorithms take linear time.

Further research should test values of N significantly greater than 64, the number of processors on 
ParaLeap, to view the full extent of the parallel speed-up. More research can be done to determine whether an 
increase in ears has an effect on runtime of the Ear Decompositon Algorithm.

How XMT-C Works
XMT-C and the Ear Decompositon Algorithm
TJHSST Computer Systems Research Lab

2007-2008
Luis Alejandro Valentin

Input:  A bridgeless, undirected graph G 

Output: An ordered set of paths representing an ear 
decomposition of G

begin

     1. Find a spanning tree T of G

     2. Root T at an arbitrary vertex r, and compute         
         level(v) and p(v), for each vertex v ≠ r, where       
         level(v) and p(v) are the level and the parent of    
         v, respectively.

     3. For each nontree edge, e= (u, v), compute           
         lca(e)= lca(u,v) and level(e) = level(lca(e)). Set    
         label(e): (level(e), s(e)), where s(e) is the serial    
          number of e.

     4. For each tree edge g, compute label(g).

     5. For each nontree edge e, set                                
         Pe =  {e} U {g | label(g) = label(e) }. Sort the Pes   
         by label(e).

end


	Slide 1

