
Creating an Evolution Simulator Using Agent-Based Modeling and Simulating
TJHSST Computer Systems Lab 2007-2008

by Natasha Wallage
Abstract

The main purpose of this program is to simulate accurately
the genetic evolution of a species. It will attempt to do so
using the most common evolutionary device known as genetic
drift, a means of microevolution. This project is actually one of
Agent-Based Modeling and Simulating (ABMS) in which the
organisms are agents that react with one another and their
environment. It has successfully linked trait value changes
with environmental disasters that create stress on a species.

Introduction
Evolution is often thought of as the changes that occur in an
organism to better adapt it to its environment. However, this is not
completely true. Evolution occurs in both positive and negative
directions. It is completely random and the result could be in favor
of the organism or it might not. It just so happens that the
organisms resulting from an inefficient “evolution” do not survive
and thus the species are left with the more fit species that will
reproduce and populate. I am trying to simulate evolution and
track the change in a species' traits to better understand how
evolution really works and, more importantly, to experiment with
genetic algorithms as represented in Computer Science.

The computer will simulate an environment and the user can
modify that environment. Modification of an organism environment
can force it to adapt and in essence, better survive. Because of
this, those that are not adaptable to the change will die off and
those that are will live on and reproduce, thus creating a genetic
drift in the species. This is the theory, and according to this theory,
one should be able to predict the changes in a species genetic
makeup due to a change in its environment. If the environment
becomes hotter, those creatures with higher temperature tolerance
should be less affected than those without a high temperature
tolerance, and so one would expect to see the species evolve to
have a greater tolerance to higher temperatures. My project tracks
speed and lung capacity as the adaptable traits.

Agent-Based Modeling

The actual evolution simulator is an ABMS with the Flubber class
forming the ‘agents.’ An agent is “autonomous and self-directed.”
It can “function independently in its environment and in its
dealings with other agents.” [8] Mostly, an ABMS focuses on the
interactions between the agents. In this project, I observed both
the interactions between the agents and the interaction between
the agents and their environment.

Main classes
1. Blubber class

The sole purpose of the Blubber class is to provide food for the Flubber class. It
stored the amount of energy it contains. As it gets older, it will grow bigger and
thus the amount of energy it contains will increase. (If a Flubber eats an older
Blubber it will gain more energy.)

2. Flubber class

The Flubber population is the species that is being studied. It contains
changeable traits in its ’DNA’ which determine the characteristics of its children
(unless they be claimed by mutation).

• States: Each Flubber has four states: hungry, sexy, drowning, and curious. A
Flubber bases its next action on its current condition. If it is hungry, it will search
for food to eat or return to a nearby location from memory. If it is sexy, it will
search for a mate of the opposite sex that is also sexy. If it is drowning it will
retrace its steps until it is no longer lacking in oxygen. Finally, if the Flubber is
none of the afore mentioned conditions, it is curious. When a Flubber is curious, it
will freely roam about its environment, noting the location of food that it ’sees.’

• Memory: Flubbers have two basic memories. One is devoted to known food
locations while the other is devoted to recent steps taken.

• Genes: When two Flubbers mate, their genes are collected to determine the
genetic make-up of the offspring, though randomly mutation will occur and the
child will receive a gene that is not of its mother or father.

3. Environment class

This class contains all the Flubber and Blubber objects in the environment and
allows them to react with one another. It has two HashMaps; one for the Flubber
population and one for the Blubber population. This class also provides the GUI
for the simulation and is the portal for user input.

• States: The Environment class also has four different states; normal state,
drought, flood, and disease. The normal state is the default state of the
Environment in which the plants grow at a somewhat speedy rate and there is
little or no stress on the species whatsoever. When a drought is present, about
eighty percent of the food in the Environment will die and the re-growth and
regeneration of the plant life will be sluggish. Any water that was previously in
the Environment will disappear (dry up). A flood fills the entire Environment with
water, leaving on the plant life above the water. This means that the Flubber
class can only survive by remaining on top of the Blubber plant life. However, the
re-growth and regeneration of the plant life is increased while the Environment
remains in this state. A diseased Environment will remove any individual Flubbers
that do not meet the immunity required to survive. Depending on the severity of
the disease and the diversity of the Flubber population, the disease may kill
anywhere from no Flubbers to all Flubbers in the population.

References
[1] Chris Colby, “Introduction to Evolutionary Biology”,
http://www.talkorigins.org/faqs/faq-intro-to-biology.html
[2] Charles Darwin, “The Origin of Species”,
http://www.talkorigins.org/faqs/origin.html
[3] John Wilkins, “Evolution and Chance”,
http://www/talkorgins.org/faqs/chance/chance.html
[4] Laurence Moran, “Random Genetic Drift”,
http://www.talkorgins.org/faqs/genetic-drift.html
[5] Jaroslaw Puszcynski, “Artificial life Portal”,
http://www.alife.pl/portal/main/e/index.html
[6] Jeff Smith, “Genetic Algorithms: Simulating Evolution on the
Computer”,
http://www.developer.com/tech/article.php/964131
[7] Eric Turner, “Evolution Simulator”,
http://www.tjhsst.edu/ rlatimer/techlab07/TurnerProposal07.pdf
[8] Macal and North, “Tutorial on Agent-Based Modeling and
Simulation”,
http://www.cas.uiuc.edu/networkreadings/north1.pdf

Fig 1. A snapshot of the final version of the evolution
simulator. The bunnies represent the Flubber class while the
plants represent the Blubber class.

Fig 2. The DualGraph class graphing population
and average population speed value over time.

Fig 3. Output from the MultiGraph class
reconstructed in Microsoft Excel.

Fig 4. The first simulator that
included plant life, herbivores,
and carnivores. This model was
extremely fragile and
unsuccessful. The predators are
represented by the red dot, the
herbivores with the blue, and
the plant life with the green
squares. The slider bars on the
left allowed for the user to
control the death rates and
breed rates for each population.

Results and Conclusions
In my first model (Fig 4), I included both predators and prey. This
made the system very complex and unstable. If there were too
many predators, they would end up consuming all the prey and
then starve. If there were only a few predators, they would have
a hard time catching the prey and would usually die before
breeding. Then the predators died out, the prey population would
surge and the food from the environment could not grow fast
enough to feed the gigantic herbivorous prey population.
Eventually, the prey population would die out due to starvation.
This also happened when the initial prey population was too
large, thus when the prey died from starvation, the predators
also died out. My current model (Fig 1) has proved to be much
more successful than its predecessor. Because there are no
predators, the system is less susceptible to balancing problems. I
have run this simulation consistently for 10 hours and the
population of Flubber agents does not die out.

With the new model in place, the program runs quite smoothly and
the graphs provide a good graphical display of what is happening.
It behaves almost as one would predict with an oscillating
population value and a trait value that shows an upward trend
(evolution for the better). From the graphs, you can see that the
trait values usually show a rapid increase when the population is
very high. Because the traits I am tracking are speed and lung
capacity, this makes a lot of sense. As the population gets high,
the availability of food decreases and the ability to get to food
quicker becomes an important survival skill; therefore, the agents
with greater speed will live on to reproduce while those with lesser
speed will die out, increasing the trait average for the population.
On the other hand, if there is a flood, the agents with the greatest
lung capacity will live on while those with low lung capacity will die
out. This means the average trait value of lung capacity will
increase over time. Overall, the project was a success and the
evolution simulator shows strong similarities to real life.

	Slide 1

