
Procedural Generation and Terrain Procedural Generation and Terrain 
Rendering in a 3D GameRendering in a 3D Game

Justin Warfield- Period 5
TJHSST Computer Systems Lab 2007-2008

Abstract:
The goal of this project is to create a basic 3-dimensional video game 

utilizing several techniques (especially fractal geometry, multi-variable 
algebra, and statistical analysis) to procedurally generate terrain and game 
environment and render them in an efficient and effective manner.

Background:
Many techniques are out there for creating random terrain, 

which seems to be the most common use of procedural 
generation. Fractal geometry is widely used in such algorithms. 
Similar techniques are commonly used to create random 
textures, such as cloudy skies and ground. The unreleased 
game, Spore, is expected to be groundbreaking in the area of 
procedural generation, using procedural algorithms to create 
3D creature models and animations. The use of 3D equations 
to model terrain seems to be seldom use and research is 
lacking, but the speed and potential of terrain functions has 
drawn me to the use of multi-variable equations. Hopefully my 
program will be completed implementing procedural generation 
in a new way, paving the way for further testing and 
experimentation. As of now, most of my research energies have 
been spent learning OpenGL and its GLUT library, but I’ve 
found a few articles on gameprogrammer.com and the Intel 
website.

Procedures/Methods:
Using OpenGL and Python (and the OpenGL binding for 

Python, PyOpenGL), the first step was to create a generic 3D 
game. A basic framework has been created for an interactive 
game environment with enemies and bombs. After attempting the 
use of fractal geometry to generate global terrain patterns, this 
has been determined to be too slow (almost 10 frames per 
second) to generate a minimum area. Multivariable equations may 
be better suited to generate terrain, with pseudo-random results. 
The use of an equation of order 1 to determine terrain would be 
much faster than current techniques. Testing wouldn’t be clear cut 
for such a program. I need to make sure what’s generated is both 
random and realistic, which are not easily quantifiable 
measurements. Human testing would be most effective. 
Examination of different terrain equations is done using a java 
program that can generate an interactive height map, and the 
height map included in the game. Realistic environments are 
being added, but not yet effectively.

Expected Results:
Results can be presented in several ways. Comparison of 

various techniques would be effective. File size is also a good 
measurement for how much of a video game is procedurally 
generated (the smaller the file, the more game content is 
generated during game play). So far, lines of code and fps has 
shown that multi-variable equations are far more efficient than 
geometric techniques.

Use of a circular rendering area with decreasing detail with 
increasing area has been effective, and textures make the seams 
undectectable.

Conclusion:
In the end, even if my ultimate goals are not realized, I will 

at least have contributed minor tweaks and ideas to the field of 
procedural generation, and hopefully even applied procedural 
generation to an entirely new area, paving the way to a wider 
range of applications. Even if my contributions are minor and 
don’t meet my expectations, hopefully they will build upon 
current techniques and allow later programmers to further build 
upon my findings.


