
Procedural Generation and Terrain Procedural Generation and Terrain 
Rendering in a 3D GameRendering in a 3D Game

Justin Warfield- Period 5
TJHSST Computer Systems Lab 2007-2008

Abstract:
The goal of this project is to create a basic 3-dimensional video game 

utilizing several techniques (especially fractal geometry, multi-variable 
algebra, and statistical analysis) to procedurally generate terrain and game 
environment and render them in an efficient and effective manner.

Introduction:
Many techniques are out there for creating random terrain, 

which is the most common use of procedural generation. 
Fractal geometry is widely used in such algorithms. Similar 
techniques are commonly used to create random textures, such 
as cloudy skies and ground. The unreleased game, Spore, is 
expected to be groundbreaking in the area of procedural 
generation, using procedural algorithms to create 3D creature 
models and animations. The use of 3D equations to model 
terrain is seldom used and research is lacking, but the inherent 
referential transparency, speed and potential of terrain functions 
has drawn me to the use of multi-variable equations. My 
program implements procedural generation in a new way, 
paving the way for further testing and experimentation. 
Naturally, this has also led to investigation into the best and 
most efficient way to render the terrain generated.

Methods:
The Camel Crusaders Game:

The Camel Crusaders Game is programmed in Python, utilizing OpenGL 
through the PyOpenGL library. The first step was to create a generic, 1st person, 
3D game. The object of the game is to move about the world, killing 
continuously respawning lions by throwing an endless supply of bombs at them. 
At the same time, the player cannot get to close to the lions or he’ll lose health. 
Once all health is gone, the game is over. A getHeight(x, y) method is called to 
determine the height of the terrain at a given point, while the genEnviro(ax, ay, 
bx, by, cx, cy) method determines the environment for a given area—applying 
the proper ground texture and generating foliage. Within the CamelCrusader 
code, only these two methods had to be altered to compare various methods of 
procedurally generating the game’s world. A separate drawterrain() method is 
used to render the terrain in various ways.

A debug framework was also put in place utilizing the various function 
keys. Other keys can lower and raise the water level, modify the view for an in-
game map, and even change how extreme or how vast the land itself is. This 
enabled quick, in-game comparison and editing of the terrain itself.

Results:
Generation Methods:

Initially, recursive fractal methods were used to generate terrain, but this required the 
terrain data to be generated beforehand and stored in arrays. This was time consuming 
and although the result was locally realistic, there was no way to insure consistency of the 
game map each time the game was played.

Next, an entirely new method was attempted, with little literature to be found of any 
previous use: function-based terrain. The function used is the sum of a sine function of x 
and a sine function of y, whose amplitude and wavelength values are in turn other sine 
functions. The resulting height map is above, on the bottom right. Two other variations 
were tried out as well. The top map is the sum of the original function called three times, 
but at three different scales. This function is much more chaotic and realistic, but at large 
values, the function becomes too chaotic. A second method (on the bottom right) involved 
calling the terrain function recursively, resulting in a highly chaotic and pseudo-random, yet 
consistent, landscape.

Render Methods:
Originally, terrain was simply generated by squares around the player. This method 

proved slow, especially since I wanted to display a wider area of the terrain, with more 
detail. The initial fix to this was to code the drawterrain() method so that the squares drawn 
were larger, the farther away they were from the player. This eliminated unnecessary detail 
far away, while allowing more detail nearby. However, the disparate sizes of the squares 
created large gaps in the rendered terrain. This was fixed by drawing the ground in 
concentric circles about the player instead of squares. Once ground textures were added, 
the seams between ground polygons became invisible. By only rendering the polygons 
within the players view, efficiency was also greatly increased. At first, the terrain could only 
reasonably be rendered within 20 units, while now the game easily renders the terrain up to 
20, 000 units away.

Conclusion:
I may not have reached the area of procedural 

modeling, sound, or gameplay in my researches, but this is 
because I found a sufficient challenge in the generation 
and rendering of terrain. Procedural methods are unique 
and powerful, given that they don’t need to store large 
amounts of data, and the scope of the land they generate 
is virtually limitless. Working with terrain functions and 
exploring various methods and equations to achieve a 
realistic terrain method was intriguing. From my research, 
there was little to no use of multi-variable equations to 
generate terrain. They have proved to be much more 
effective and efficient than fractal methods, as they are 
quicker to generate and exactly consistent each time the 
method is run. Hopefully this avenue for terrain generation 
will grow, with its use more thoroughly understood and its 
applications become better known.


	Slide 1

