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Abstract

The Schwarz-Christoffel transform is a conformal mapping from

the upper half of the complex plane to a polygonal domain. It al-

lows many physical problems posed on two-dimensional, polygonal

regions, such as heat flow, fluid flow, and electrostatics, to be solved

numerically. This type of problem cannot generally be solved in closed

form; the Schwarz-Christoffel transform provides an exceptionally ac-

curate method of solution. This paper describes the implementation

of a working software unit that efficiently and accurately calculates

Schwarz-Christoffel transforms and inverses. The program incorpo-

rates graphical, easy-to-use interfaces and will contain resources to

aid in solving physical problems. Future research into mathematical

extensions to the Schwarz-Christoffel transform, such as the inclusion

of simple curves, will be conducted.

Keywords: Schwarz-Christoffel transform, conformal mapping,

numerical analysis, Laplace’s equation, fluid flow, heat flow

1 Introduction

Many physical problems are expressed as differential or boundary value prob-
lems over a surface. Often, these surfaces are or can be approximated by
two-dimensional polygons. When this occurs, one method of determining ac-
curate solutions is by assuming the polygonal domain exists in the complex
plane and determining a conformal map, which preserves the structure of
Laplace’s equation, that restates the problem in a simpler domain. Here, the
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upper half-plane is used. A solution to the problem, now easy to solve analyt-
ically or numerically, is then mapped back to the original domain. For such
polygonal domains, a method of determining the specific transform needed is
provided by the following formula, known as the Schwarz-Christoffel trans-
form:

f(z) = A

∫ z

0

n∏
j=1

(ζ − xj)
−θj/πdζ +B. (1)

In this formula, ζ is an independent complex variable in the upper half-
plane, the θj are the exterior angles of the polygon, the xj are prevertices of
the mapping (given along the real axis), n is the number of verticies of the
polygon, and A and B are complex constants that specify the location, size,
and orientation of the image polygon in the complex plane. The θj must
satisfy

n∑
j=1

θj = 2π, (2)

which ensures the completeness of the image polygon [2]. Unfortunately,
the Schwarz-Christoffel formula is not easy to evaluate, and requires both
effective integration algorithms and an efficient, convergent method to solve
a specific nonlinear equation. Implementation of such numerical routines is
not a trivial problem, and is the subject of this paper.

The initial project may be divided into four separate problems. First, a
method to effectively evaluate integrals of the form found in the Schwarz-
Christoffel formula is required. Second, a numerical algorithm to solve the
so-called Schwarz-Christoffel parameter problem, a system of nonlinear equa-
tions for the prevertices, must be developed. Third, methods to evaluate the
forward and backward transforms based on given prevertices must be coded.
Fourth, a user interface is needed, which should be robust and accessible to
allow nonspecialists to systematically solve various physical problems. The
four components may be coded simultaneously or in series, as they are by
nature almost entirely separable problems. In this project, each part was
coded in series.

Subsequent research will be conducted into improvements and optimiza-
tions to the numerical algorithms for various subproblems and extensions.
These include the problem of mapping polygons with large aspect ratios,
which are generally highly ill-conditioned, and the extension of the Schwarz-
Christoffel formula to simple curves. The goal of the project is thus twofold:
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to produce a piece of software that will be useful in the solution of real,
physical problems, and to improve upon current algorithms for producing
the Schwarz-Christoffel transform.

2 Background

The Schwarz-Christoffel transform was first discovered independently in the
late 1860s by Elwin Christoffel and Hermann Schwarz. Schwarz used some of
the ideas of the transform to provide a more rigorous proof of the Riemann
Mapping Theorem, which he had previously shown to be incomplete, but the
majority of this work was on a purely theoretical level [5]. The usefulness of
the transform was mitigated by the formula’s unwieldiness, as the mappings
for all but the simplest domains could not be calculated in closed form.
Numerical estimates, especially for nonsymmetric polygons with four or more
verticies, could not be effectively calculated by hand. Application to physical
problems, therefore, was limited at best until the advent of the computer. A
computer algorithm to compute the Schwarz-Christoffel transform was first
written in the 1960s, and others have been written and modified since then
[3].

The first problem in calculating the Schwarz-Christoffel mapping is the
evaluation of the integral given by Eq. (1). The integrand contains singu-
larities at each of the endpoints of the image polygon, which tend to render
ordinary numerical integration routines either useless or hopelessly slow. In
addition, the presence of negative powers in f means that domains of appli-
cability for each of the subfunctions (ζ −xj)

−θj/π must be chosen so that the
entire domain in and immediately around the image polygon is meromorphic.
Although several quadrature routines have been used for this problem, the
method of choice today is Gauss-Jacobi quadrature, which uses a specially-
tailored weighting function to choose points of evaluation and weights for the
points that maximize efficiency. In practice, the Schwarz-Christoffel formula
is altered so that the last prevertex, xn, is chosen to be both −∞ and +∞
(the values are equivalent for a conformal map, which acts on the Riemann
sphere). This can always be done due to the extra degrees of freedom con-
tained in Eq. (1). The integrals that must be evaluated in practice in the
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course of the Schwarz-Christoffel transform are of the form

∫ xi

xi−1

n−1∏
j=1

(ζ − xj)
−θj/πdζ. (3)

These integrals can always be written as required for Gauss-Jacobi quadra-
ture; that is, in the form

∫ b

a

(z − a)α(z − b)βψ(z)dz, (4)

where α and β are real numbers greater than −1.
The points and weights of a Gauss-Jacobi quadrature are calculated here

using a routine from Numerical Recipes [4] which efficiently estimates and
solves for the roots of the Jacobi polynomials, which form the sample points
just as the roots of the Chebyshev polynomials form the sample points for
standard Gaussian quadrature. These points, however, are uniformly cal-
culated in the range [−1, 1], and the integrals must be adjusted slightly to
conform to this range. During the calculation of the prevertices, discussed
below, the z in Eq. (4) are restricted to the real axis; however, in direct
calculations once the prevertices have been found, the z will generally be
fully complex.

The second problem is the Schwarz-Christoffel parameter problem, where
the xj in Eq. (1) are calculated. As described in [2], a series of nonlinear,
constrained equations can be formed from the requirement that the image
polygon and the desired polygon be similar (the constants A and B in Eq.
(1) then ensure congruency). Written out, there are n−3 linear equations in
n− 3 unknowns, once the extra degrees of freedom have been taken care of
by arbitrarily giving three of the xj precise values. Here, as in the literature,
we take x1 = −1 and x2 = 0 in addition to the already-defined xn = ±∞.
The equations to be solved, ensuring that the target polygon and the image
of the Schwarz-Christoffel map are similar, are then

|
∫ xi

xi−1

∏n
j=1 (ζ − xj)

−θj/πdζ |

|
∫ x2

x1

∏n
j=1 (ζ − xj)−θj/πdζ |

−
|wj − wj−1|

|w2 − w1|
= 0, (5)

where the w are the target vertices, i = 3, 4, ..., n− 1, and all other variables
are as defined above. However, there is an additional complication, as pre-
serving the order of the prevertices on the real axis is important. The extra
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constraint can be expressed as

1 < x3 < x4 < . . . < xn−1 <∞. (6)

The unconstrained problem is relatively easy to solve; however, the constraint
prevents a naive application of a Newton’s Method variant to this problem.
To get around this, Trefethen in [3] suggests a simple change of variables
that ensures the inequalities of Eq. (6). Take a new series of variables, χj ,
and let

χj = ln (xj − xj−1). (7)

The resulting χj will automatically obey Eq. (6), and the original xj are
found by the simple inverse formula

xj = xj−1 + eχj . (8)

This new set of equations in the χj is readily solved by a variant of Newton’s
Method that employs a forward-difference approximation to the Jacobian
matrix.

3 Development

The software has been written entirely in Java, with certain accuracy testing
conducted in MATLAB. The entire development of the program is designed
to be achieved in stages by attacking the subproblems individually. Several
important classes are described below:

• class Complex - this class stores and performs arithmetic on complex
numbers, which are not directly supported by Java. Several of the
methods, including the multiplication and division algorithms, are de-
signed to run as quickly as possible while avoiding intermediate overflow
and floating-point error propagation. The multiplication method, for
instance, requires only three real multiplications rather than four. (see
Appendix for examples)

• class GaussJacobiWeights - this class calculates and stores the sample
points and weights for a given Gauss-Jacobi quadrature over the inter-
val [−1, 1]. This routine uses Newton’s Method to find the roots of the
Jacobi polynomials, which are the sample points for the integral, and
was taken and translated from [4].
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• class SchwarzFunction - this class evaluates the integrand of a given
real-valued Schwarz-Christoffel integral, serving as a storage class for
data of this kind.

• class GaussQuad - this class accepts as input ψ, a, b, α, and β from
Eq. (4). For an arbitrary integral in that form, shifting and scaling the
bounds produces the equivalent integral

cα+β+1

∫ 1

−1

(ζ − 1)α(ζ + 1)βψ(cζ +m)dζ, (9)

where b = a+b
2

and c = b−m = m− a. This integral is then evaluated
using the sample points and weights given by the GaussJacobiWeights
class and returned. For any GaussQuad object, varying numbers of sam-
ple points (and thus varying accuracy) are accepted by its integrate()
method. (see Appendix for example code)

• class RealNewtonRaphson - this class accepts an array of vertices and cal-
culates the necessary prevertices as well as the constants A and B from
Eq. (1). The method employs a standard Newton-Raphson method
to solve the Eq. (5). At each step, an approximate Jacobian matrix
for the function is calculated using a forward-difference method in each
dimension; the step vector is then solved for using an LU factorization
on the equation.

Jδ~x = ~f, (10)

where J represents the Jacobian, δ~x the step vector, and ~f the current
function vector. Note that by employing a forward-difference method
to find the Jacobian, the number of function evaluations can be cut
in half, as the current function vector can be reused in the Jacobian
calculation. (see Appendix for example code)

• class ForwardGaussQuad - this class, using already-calculated values for
the prevertices, evaluates the Schwarz-Christoffel integral at a given
point. To minimize error caused by the presence of singularities near
the path of the integral (the singularities at the endpoints are handled
by the Gauss-Jacobi quadrature), the path of integration is divided
recursively such that no segment is closer to a singularity than one-half
its length, a technique employed in [3]. Such recursive subdivision is
known as compound Gauss-Jacobi quadrature.
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• class SchwarzChristoffel - this class runs the graphical user interface and
calls RealNewtonRaphson and ForwardGaussQuad when necessary. The
graph itself has the ability to show axes and manually adjust window
parameters.

In future iterations of the project, a new set of routines will be imple-
mented to calculate continuous Schwarz-Christoffel problems. Immediately
following from Eq. (3) above, we have

f ′(z) = A

n−1∏
j=1

(ζ − xj)
−θj/π. (11)

To change this into a continuous problem, we can rewrite this as

f ′(z) = Ae
1

π

Pn−1

j=1
−θj ln (z−xj). (12)

Then, defining the natural logarithm function as single-valued in the upper
half-plane, except where xi = z, f ′ becomes an analytic function in the
required domain. To formulate the continuous-boundary problem, we simply
replce the sum in Eq. (12) with an integral, and integrate the entire function
to find f(z):

f(z) = A

∫ z

0

e
1

π

R

∞

−∞
−θ(x) ln (ζ−xj)dxdζ +B, (13)

where θ(x) represents the amount of turning per unit length on the real axis,
such that ∫

∞

−∞

θ(x)dx = 2π. (14)

The continuous problem therefore has an extra subproblem to solve, namely,
the solution of the integral equation, Eq. (13), to find θ(x) at every x.

The majority of testing of the program is specific to a single numerical
routine; that is, each of the algorithmic components are tested individually.
To calculate the GaussQuad routines, for instance, randomly generated sam-
ple problems are solved by MATLAB to provide an approximate check on the
accuracy of solutions, then precision is achieved by manipulating the number
of sample points used for the quadrature.
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Figure 1: Computation time for prevertex calculation on a typical computer.

4 Results and Discussion

The purpose of this project was to calculate and display Schwarz-Christoffel
transforms, which conformally map the upper half-plane to an arbitrary poly-
gon, efficiently and accurately. The evaluation of the Schwarz-Christoffel
formula involves several parts, including the efficient calculation of a certain
class of integrals as well as a solver of nonlinear systems of equations; each
of these parts has been fully implemented in an object-oriented context. The
GUI is designed to demonstrate conceptually the action of the transform by
displaying the w- and z-planes side by side and mapping a given grid into
the polygon (see Fig. [2]).

Results on polygons eleven and fewer vertices suggest that the program
has both a reasonable error tolerance and reasonable computation time re-
quirements (see Fig. [1]). The calculation time for prevertex calculation is
comparable with routines described in the literature. Efficiency has been
gained by implementing a two-step integration in ForwardGaussQuad which
deals with the real and complex parts of the path integral separately and
minimizes the average depth of recursion.
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Figure 2: Example outputs.

Appendix

Code for class Complex

public class Complex

{

...

public Complex multiply(Complex z)

{

double temp1=x*z.real();

double temp2=y*z.imag();

return new Complex(temp1-temp2,(x+y)*(z.real()+z.imag())-temp1-temp2);

}

public Complex divide(Complex z)

{

double temp1=z.real()/z.imag();

double temp2=z.imag()/z.real();

if(Math.abs(z.real())>=Math.abs(z.imag()))

{

double denominator=z.real()+z.imag()*temp2;

return new Complex((x+y*temp2)/denominator,(y-x*temp2)/denominator);

}

else

{

double denominator=z.real()*temp1+z.imag();

return new Complex((x*temp1+y)/denominator,(y*temp1-x)/denominator);

}

}

public double modulus()

{

if(x==0&&y==0)
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return 0.0;

else if(y==0)

return Math.abs(x);

else if(x==0)

return Math.abs(y);

if(Math.abs(y)>=Math.abs(x))

return Math.abs(x)*Math.sqrt(1.0+(y*y)/(x*x));

else

return Math.abs(y)*Math.sqrt(1.0+(x*x)/(y*y));

}

public Complex sqrt()

{

double w=0;

if(x==y&&y==0)

return new Complex(0.0,0.0);

else if(Math.abs(x)>=Math.abs(y))

w=Math.sqrt(Math.abs(x))*Math.sqrt((1.0+Math.sqrt(1.0+(y*y)/(x*x)))/2.0);

else

w=Math.sqrt(Math.abs(y))*Math.sqrt((Math.abs(x/y)+Math.sqrt(1.0+(x*x)/(y*y)))/2.0);

if(x>=0)

return new Complex(w,y/(2*w));

else if(y>=0)

return new Complex(Math.abs(y)/(2*w),w);

else

return new Complex(Math.abs(y)/(2*w),-w);

}

public Complex power(double a)

{

double theta=this.argument();

double r=this.modulus();

Complex temp = new Complex(Math.cos(theta*a),Math.sin(theta*a))

.multiply(Math.pow(r,a));

return temp;

}

public Complex ln()

{

double theta=this.argument();

double r=this.modulus();

return new Complex(Math.log(r),theta);

}

public Complex exp()

{

double etothex=Math.exp(x);

return new Complex(etothex*Math.cos(y),etothex*Math.sin(y));

}

...

}

Code for class ForwardGaussQuad
public class ForwardGaussQuad

{

...

public Complex recurse(int N, Complex a, Complex b, double al, double be)

{

if(a.imag()-b.imag()==0&&a.real()-b.real()==0)

return new Complex(0,0);
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Complex half = a.add(b).divide(2.0);

if(closeToSingularity(a,b,prevertex))

return recurse(N, half, b, 0.0, be).add(recurse(N, a, half, al, 0.0));

return integrateSubinterval(N, a, b, al, be);

}

...

public Complex integrateSubinterval(int N, Complex a, Complex b, double alpha, double beta)

{

GaussJacobiWeights gjw = new GaussJacobiWeights(0.0,beta,N);

double[] points = gjw.getPoints();

double[] weights = gjw.getWeights();

double m = (b.real()+a.real())/2;

double c = a.real()-m;

double bimag = b.imag();

Complex sum = new Complex(0.0,0.0);

for(int i=0;i<weights.length;i++)

sum=sum.add(value(new Complex(c*points[i]+m,bimag),-1,-1).multiply(weights[i]));

sum=sum.multiply((new Complex(c,0)).power(beta+1.0));

gjw = new GaussJacobiWeights(alpha,0.0,N);

points = gjw.getPoints();

weights = gjw.getWeights();

m = (b.imag()+a.imag())/2;

c = a.imag()-m;

double areal = a.real();

Complex sum2 = new Complex(0.0,0.0);

for(int i=0;i<weights.length;i++)

if(alpha!=0.0)

sum2=sum2.add(value(new Complex(areal,c*points[i]+m),1,-1).multiply(weights[i]));

else

sum2=sum2.add(value(new Complex(areal,c*points[i]+m),-1,-1).multiply(weights[i]));

sum2=sum2.multiply(new Complex(0,c).power(alpha+1.0));

if(a.imag()==0)

sum2.imag(-sum2.imag());

return sum.add(sum2);

}

...

}

Code for class GaussQuad
public class GaussQuad

{

...

public double integrate(int N)

{

GaussJacobiWeights gjw = new GaussJacobiWeights(alpha,beta,N);

double[] points = gjw.getPoints();

double[] weights = gjw.getWeights();

double m= (b+a)/2;

double c= b-m;

double sum = 0;

for(int i=0;i<weights.length;i++)

sum+=f.value(c*points[i]+m)*weights[i];

sum=sum*Math.pow(c,alpha+beta+1);

return sum;

}

}
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Code for class RealNewtonRaphson
public class RealNewtonRaphson

{

...

private double[] solvematrix(double[][] A, double[] b)

{

int l=n-3;

double[][] L = new double[l][l];

double[] q = new double[l];

double[] x = new double[l];

for(int p=0;p<l;p++)

L[p][p]=1;

for(int p=0;p<l;p++)

for(int r=p+1;r<l;r++)

{

for(int c=p+1;c<l;c++)

{

A[r][p]=0;

A[r][c]=A[r][c]-L[r][p]*A[p][c];

}

}

for(int r=0;r<l;r++)

{

double sum=0;

for(int c=0;c<r;c++)

sum+=L[r][c]*q[c];

q[r]=(b[r]-sum);

}

for(int r=0;r<l;r++)

{

double sum=0;

for(int c=l-r;c<l;c++)

sum+=A[l-r-1][c]*x[c];

x[l-r-1]=(q[l-r-1]-sum)/A[l-r-1][l-r-1];

}

return x;

}

private double[][] jacobian(double[] funcvalues, double[] x)

{

double[][] jac=new double[n][n];

for(int j=0;j<(n-3);j++)

{

double temp = x[j+2];

double h = TOL*Math.abs(temp);

if(h==0)

h=TOL;

x[j+2]=temp+h;

h=x[j+2]-temp;

double[] funcvalues2=function(x);

x[j+2]=temp;

for(int i=0;i<(n-3);i++)

jac[i][j]=(funcvalues2[i]-funcvalues[i])/h;

}

return jac;

}

...
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private double[] function(double[] x)

{

x=xhattox(x);

double[] xwithstuff=new double[n-1];

xwithstuff[0]=-1;

xwithstuff[1]=0;

for(int i=2;i<(n-1);i++)

xwithstuff[i]=x[i-2];

double[] f = new double[n-3];

SchwarzFunction denom = new SchwarzFunction(x,angle,0);

GaussQuad gq = new GaussQuad(denom, denom.alpha(), denom.beta(), denom.a(), denom.b());

double den = Math.abs(gq.integrate(GQN));

double den1 = vertex[1].subtract(vertex[0]).modulus();

for(int i=0;i<(n-3);i++)

{

SchwarzFunction numer = new SchwarzFunction(x,angle,i+1);

gq = new GaussQuad(numer, numer.alpha(), numer.beta(), numer.a(), numer.b());

double num = Math.abs(gq.integrate(GQN));

double num1 = vertex[i+2].subtract(vertex[i+1]).modulus();

f[i]=num/den-num1/den1;

}

return f;

}

...

}
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