
Conformal Mapping Using the Schwarz-Christoffel Transform
2007-2008

Evan Warner

November 14, 2007

Abstract

The Schwarz-Christoffel transform is a conformal mapping from
the upper half of the complex plane to a polygonal domain. It
allows many physical problems posed on two-dimensional, polygo-
nal regions, such as heat flow, fluid flow, and electrostatics, to be
solved numerically. This type of problem cannot generally be solved
in closed form; the Schwarz-Christoffel transform provides an ex-
ceptionally accurate method of solution. This project will produce
a working software unit that efficiently and accurately calculates
Schwarz-Christoffel transforms and inverses. The program will in-
corporate graphical, easy-to-use interfaces and contain resources to
aid in solving physical problems. In addition, research into math-
ematical extensions to the Schwarz-Christoffel transform, such as
the inclusion of simple curves, will be conducted.

Introduction

Many physical problems are expressed as differential or boundary value
problems over a surface. Often, these surfaces are or can be approximated
by two-dimensional polygons. In this specific case, one method of deter-
mining accurate solutions is by taking the polygonal domain to exist in
the complex plane and determining a conformal map, which preserves the
structure of Laplace’s equation, that restates the problem in a simpler do-
main, most often the upper half-plane. The new problem, now easy to
solve analytically or in closed form, is then mapped back to the original
domain. For such polygonal domains, a method of determining the spe-
cific transform needed is provided by the following formula, known as the
Schwarz-Christoffel transform:

f(z) = A

∫ z

0

n∏
j=1

(ζ − xj)
−θj/πdζ +B. (1)

In this formula, ζ is an independent complex variable in the upper half-
plane, the θj are the exterior angles of the polygon, the xj are ’preverticies’
of the mapping (given along the real axis), n is the number of verticies of
the polygon, and A and B are complex constants that specify the location
of the image polygon in the complex plane. The θj must satisfy

n∑
j=1

θj = 2π, (2)

which ensures the completeness of the image polygon [2]. Unfortunately,
the Schwarz-Christoffel formula is not easy to evaluate, and requires both
effective integration algorithms and efficient, convergent nonlinear equa-
tion solvers. Implementation of such numerical routines is not a trivial
problem, and is the subject of this paper.

Background

The Schwarz-Christoffel transform was first discovered independently in
the late 1860s by Elwin Christoffel and Hermann Schwarz. Schwarz used
some of the ideas of the transform to provide a more rigorous proof of
the Riemann Mapping Theorem, which he had previously shown to be in-
complete, but the majority of this work was on a purely theoretical level
[5]. The usefulness of the transform was mitigated by the formula’s un-
wieldiness, as the mappings for all but the simplest domains could not be
calculated in closed form. Numerical estimates, especially for nonsymmet-
ric polygons with four or more verticies, could not be effectively calculated
by hand. Application to physical problems, therefore, was limited at best
until the advent of the computer. A computer algorithm to compute the
Schwarz-Christoffel transform was first written in the 1960s, and others
have been written and modified since then [3].

The first problem in calculating the Schwarz-Christoffel mapping is the
evaluation of the integral given by Eq. (1). The integrand contains sin-
gularities at each of the endpoints of the image polygon, which tend to
render ordinary numerical integration routines either useless or hopelessly
slow. In addition, the presence of negative powers in f means that do-
mains of applicability for each of the subfunctions (ζ − xj)

−θj/π must be
chosen so that the entire domain in and immediately around the image
polygon is meromorphic. Although several quadrature routines have been
used for this problem, the method of choice today is Gauss-Jacobi quadra-
ture, which uses a specially-tailored weighting function to choose points of
evaluation and weights for the points that maximize efficiency. In prac-
tice, the Schwarz-Christoffel formula is altered so that the prevertex xn is
chosen to be both −∞ and +∞ (the values are equivalent for a conformal
map, which acts on the Riemann sphere). This can always be done due to
the extra degrees of freedom contained in Eq. (1). The integrals that must
be evaluated in practice in the course of the Schwarz-Christoffel transform
are of the form ∫ xi

xi−1

n−1∏
j=1

(ζ − xj)
−θj/πdζ. (3)

These integrals can always be written as required for Gauss-Jacobi quadra-
ture; that is, in the form∫ b

a

(z − a)α(z − b)βψ(z)dz, (4)

where α and β are real numbers greater than −1.
The points and weights of a Gauss-Jacobi quadrature are calculated

here using a routine from Numerical Recipes [4] which efficiently estimates
and solves for the roots of the Jacobi polynomials, which form the sample
points just as the roots of the Chebyshev polynomials form the sample
points for standard Gaussian quadrature. These points, however, are uni-
formly calculated in the range [−1, 1], and the integrals must be adjusted
slightly to conform to this range. During the calculation of the preverti-
cies, discussed below, the z in Eq. (4) will be restricted to the real axis;
however, in direct calculations once the preverticies have been found, the z
will generally be fully complex, which must be dealt with by the program.

The second problem is the Schwarz-Christoffel parameter problem,
where the xj in Eq. (1) are calculated. As described in [2], a series of
nonlinear, constrained equations can be formed from the requirement that
the image polygon and the desired polygon be similar (the constants A
and B in Eq. (1) then ensure congruency). Written out, there are n − 3
linear equations in n − 3 unknowns, once the extra degrees of freedom
have been taken care of by arbitrarily giving three of the xj precise values.
Here, as in the literature, we take x1 = −1 and x2 = 0 in addition to the
already-defined xn = ±∞. The equations to be solved are then

|
∫ xi

xi−1

∏n
j=1 (ζ − xj)

−θj/πdζ|
|
∫ x2

x1

∏n
j=1 (ζ − xj)−θj/πdζ|

− |wj − wj−1|
|w2 − w1|

= 0, (5)

where i = 3, 4, ..., n − 1. However, there is an additional complication, as
the order of the preverticies on the real axis matters. The extra constraint
can be expressed as

0 < x3 < x4 < . . . < xn−1 <∞. (6)

The nonconstrained problem is relatively easy to solve; however, the con-
straint prevents a naive application of a Newton’s Method variant to this
problem. To get around this, Trefethen in [3] suggests a simple change of
variables that ensures the inequalities of Eq. (6). Take a new series of
variables, χj, and let

χj = ln xj − xj−1. (7)

The resulting χj will automatically obey Eq. (6), and the original xj are
found by the simple inverse formula

xj = xj−1 + eχj . (8)

This new set of equations in the χj is readily solved by a variant of Newton’s
Method that does not require the calculation of the Jacobian matrix (which
would be hopelessly complex), but rather uses progressive estimates.

Development

So far, the software has been written entirely in Java, although certain
routines may be later written in C to increase speed if there is a bottle-
neck at any point in the process. The entire development of the program
is designed to be achieved in stages by attacking the subproblems individ-
ually. The following is a list of classes, with short descriptions, written up
to this point:

• class Complex - this class stores and performs arithmetic on complex
numbers, which are not directly supported by Java. Several of the
methods, including the multiplication and division algorithms, are
designed to run as quickly as possible while avoiding intermediate
overflow and floating-point error propagation. The multiplication
method, for instance, requires only three real multiplications rather
than four.

• class ComplexFunction - this class stores and evaluates functions of
one complex variable. Its constructor accepts a String argument and
stores the function, if syntactically acceptable, as a String in post-
fix form. The function may then be evaluated at any point on the
complex plane. (see Appendix)

• class GaussJacobiWeights - this class calculates and stores the sample
points and weights for a given Gauss-Jacobi quadrature over the in-
terval [−1, 1]. This routine uses Newton’s Method to find the roots of
the Jacobi polynomials, which are the sample points for the integral,
and was taken and translated from [4].

• class GaussQuad - this class accepts as input ψ, a, b, α, and β from
Eq. (4). For an arbitrary integral in that form, shifting and scaling
the bounds produces the equivalent integral

cα+β+1

∫ 1

−1

(ζ − 1)α(ζ + 1)βψ(cζ +m)dζ, (9)

where b = a+b
2

and c = b−m = m−a. This integral is then evaluated
using the sample points and weights given by the GaussJacobiWeights
class and returned. For any GaussQuad object, varying numbers of
sample points (and thus varying accuracy) are accepted by its inte-
grate() method.

• class SchwarzChristoffel - this class runs the graphical user interface
and calls GaussQuad when necessary. The graph itself has the ability
to show axes and manually adjust window parameters.

Once the basic transform is operational, a new set of routines will be
implemented to calculate continuous Schwarz-Christoffel problems. Imme-
diately following from Eq. (3) above, we have

f ′(z) = A

n−1∏
j=1

(ζ − xj)
−θj/π. (10)

To change this into a continuous problem, we can rewrite this as

f ′(z) = Ae
1
π

Pn−1
j=1 −θj ln (z−xj). (11)

Then, defining the natural logarithm function as single-valued in the up-
per half-plane, except where xi = z, f ′ becomes an analytic function in
the required domain. To formulate the continuous-boundary problem, we
simply replce the sum in Eq. (11) with an integral, and integrate the entire
function to find f(z):

f(z) = A

∫ z

0

e
1
π

R∞
−∞−θ(x) ln (ζ−xj)dxdζ +B, (12)

where θ(x) represents the amount of turning per unit length on the real
axis, such that ∫ ∞

−∞
θ(x)dx = 2π. (13)

The continuous problem therefore has an extra subproblem to solve,
namely, the solution of the integral equation, Eq. (12), to find θ(x) at
every x. This will be dealt with in future iterations of the project.

Expected Results

The purpose of this project was to calculate and display Schwarz-
Christoffel transforms, which conformally map the upper half-plane to
an arbitrary polygon, efficiently and accurately. In addition, additional
research into the Schwarz-Christoffel transform itself, including its exten-
sion to curved target domains, was investigated. The evaluation of the
Schwarz-Christoffel formula involves several parts, including the efficient
calculation of a certain class of integrals as well as a solver of nonlinear sys-
tems of equations. Solving the continuous-parameter problem will require
numerical solutions to a certain class of integral equations.

For a first-quarter version of the project, the software is moderately
successful. The first problem, that of numerical integration, has been
solved and refined, and a basic user interface has been designed. Once
the equation solver has been implemented, the program itself will be fully
functional on a basic level. The completed program will be useful on sev-
eral levels: as a teaching aid, and as a tool for researchers solving certain
equations on polygonal regions. Once the basic Schwarz-Christoffel prob-
lem is numerically solved, the program can form an easy basis for testing
research in numerical analysis and mathematics that deals with improving
or expanding the Schwarz-Christoffel transform.

References

[1] Howell, L. H. (1990). Computation of conformal maps by modified
Schwarz-Christoffel transformations. Retrieved September 28, 2007,
from http://citeseer.ist.psu.edu/howell90computation.html.

[2] Saff, E. B., & Snider, A. D. (n.d.). Funamentals of complex analysis
with applications to engineering, science, and mathematics. Prentice-
Hall Engineering/Science/Mathematics.

[3] Trefethen, L. (1979). Numerical computation of the Schwarz-
Christoffel transformation. Retrieved September 28, 2007, from
ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/79/710/CS-TR-
79-710.pdf.

[4] Press W., Teukolsky, S., Vetterling, W., & Flannery, B. (1992). Nu-
merical Recipes in C, Second Edition. Cambridge University Press.

[5] O’Connor, J.J., & Robertson, E.F. (2001). Hermann Aman-
dus Schwarz. Retrieved November 3, 2007, from http://www-
history.mcs.st-andrews.ac.uk/Biographies/Schwarz.html.


