Conformal Mapping Using the
Schwarz-Christoffel Transform

Evan Warner

public clase ForwardGeusseluad

i
CaICUIate preVE rtICES - NEWtOﬂ—RaphSOH mEthOd “];uhllc Complex recurse(int N, Complex &, Complex b, double al, double be)
i
if(a.imag()-b.imag()==0kkn.real()-b.real()==0)
return new Complex(0,0);
Complex haelf = a. add(b) . divide(2.0);
if(closeToSingularity(a, b, prevertex))
return recurgell, half, b, 0.0, be).pdd(recureel(l, &, half, =l, 0.0));
return integrateSubinterval (N, a, b, al, be);
X =-1 x =0 X =1 X X }

public Complex integrateSubinterval (int N, Complex a, Complex b, double alpha, double beta)

i
GaussJacobiWelghte giw = new GeusslacobiWeights (0.0 beta N} ;

double[] pointe = gjw.getPointe();
double[] weights = giw.getWelighte();
double m = (b.real ()+a.real ())/2;
double ¢ = a.real()-m;

double bimag = b.imag();
Complex sum = new Complex(0.0,0.0);
for(int i=0;i<weighte.length;i++)
. . . sum=gum.add(value(new Complex(ce#pointe[il+m bimag) -1,-1). multiply(weights[1]));
gum=gum.multiply((mew Complex(c,0)).power (beta+l 0));
Compute geometrically similar shape LY (o Domplae o, 00) o
pointe = giw.getPointa();
welghte = giw.getWelghte();
m= (b.imag()+a.imag())/ 2;
€ = a.imag()-m;
double areal = a.real();
Complex sum? = mew Complex(0.0.0.40);

for(int 1=0;i<welighte.length;i++)

|| EOE if(alpha!=0.0)
IR S gum2=gum?2. add (value (new Complex(ereal ,c*pointe[i]+m) 1,-1) .multiply(weighte[i]));
elee
15 g pum2=gum?. add (value (new Complex (ereal c¢pointe[i]+m) -1 ,-1) . multiply(weighte(1]));
' gumd=gum2 multiply (new Complex(0,c).power (lpha+1.03);
126l 1f(a. imag()==0)
T 4 gum2 . imeg (-sumd . imag());
return sum. bdd (sum2) ;
42 3
¥
—+2. 1i -
T1ai ¥
-8 public class Gauss(uad
1160 1 {
+—1.4i -
public double integratelint N)
+ I {
411 GeneslJacobiWelighte giw = new GauselacobiWeighte(alpha beta, H);
a6 double[] poimnte = gijw.getPointel();
T double[] weighte = giw.getWeights();
0.7 double m= (b+a)/ 2;
0 5 double c= b-m;
A double sum = J;
T for(int i=0;i<weighte.length;i++)
i 0.2 sum+=f . value (c¢pointe [i]+m)*+weighte[i];
_;i 3-2;.?—3: 5—2;.3—2; l—Ei D—ZII. 8—]}..6 ZII..4—1.3—:II.. —CII.Q—JI ?—CII ::-—CII 4—CII 2 DI.2 DI.4 sum=gumsMath.powlc,alpha+theta+l) :
1 o3 return sum;
' ¥
-0 30 }
public clees RealWewtonRepheon
i
private double[] solvemetrix(double[][] A, doublel] bl
i
int l=n-3;

double[] [] L = mew double[l][1];
double[] g = new double[1]
deuble[] % = new double[1];
I for(int p=0,p<l p++)
Calculate auxiliary constants Lip) (p=t;
for(int p=0,p<l p++)
for (int r=pti;r<l;r++)

i
for(int c=p+l;c<lic++)
1
Alr][pl=0;
Alr)lel=Alr] [e]-LLx] [pl=ALplLel;
¥
r
. ... for(int r=0:rd] ir++)
File View i
double sum=0;
+1.4i for (int c=0;c<r;ct+)
113 sum+=L[r] [cl*qlc];
gqlrl=(blr]-gum);
+1.2i ¥
41 1 for (int r=0;r<l;xr++)
1
o double sum=0;
] for(int c=l-r;c<l;c++)
Lo g pumt=A[l-r-1] [c]+x[c];
x[l-r-1)=(qll-r-1]-sum)/A[1-r-1][1-r-1];
-+ 0. 7i }
Lo return x;
r
&= private double[][] jacobian(double[] funcvalues, double[] x)
40 4i i
1oz double[] [J] jec=new double[n][n];
for(int {=0;{<(m-3);]++2
+0.2i {
0. L double temp = x[{+2]:
-0.4-0.3-0.2-0.1 | 0,102/020405060708091011121314 double h = TOL=Math.sbe(temp);
I I I I I I I I I I I I I I I I lfl:.]:l={|:|
-0 1i h=TOL;
1 05 x[]+2])=temp+h; //Reduces floating-point error
h=x[{+2]-temp;
193 double[] funcvaluse?=function(x);
KT x[j+2)=temp;
for (int i=0;i<(n-3);i++)

jacli][jl={funcveluesd [1] -funcvelues[i]) /h;
¥
retuwrn jac;
]

private deuble[] fusction{double[] =}
{

r=xkettox{x) ;

double[] xwitkstuff=mew double [n-1];
rwithstoff [0]=-1;

swithstoff [1]=0;

References for(int i=2:i<(n-1);i++)

swithestuff [i]=x[i-2];

[1] Howell, L. H. (190). Compuiafion of conformal maps by mod fied double[] £ = mev double[n-3];
Sehwarz=-Chnsgaffel bransformations. Retrieved September 25, 2007, SchvarzFunction denom = mew SchyvarzFusctionix amsle 00
from http: /S eiteseer st pesu.edn Showe l00eompnt ation. htm].
GFauwssluad ggq = n=v Gaussluad{dencm. denom.alphal}, denom.betall, denom.a(), desom.b(]}}:
[2] Saff. E. B., & Snider, A, D. (). Funamental of compler analysis double d=n - Math. abs [Eq. .int E'EI.'H‘EE{GEI Bh);
Hall Egineering/ SconsefMatbemation e Preties double deni = vertex[1].subtract{vertex[0]) modulus(};
" o ' for{int i=0;i<(n-3);14+])
[3] Trefethen, L. (197} Numerial compufafion of fhe Schwarz- {
Chnsfoffel frmnsformafion. Retrieved September 28, 2007, from - - _ ~ . - i
fip: / freports.stanfordedn/ pub/ estr freports fos e/ 79/ 7100 C5-TR- dchearzFunction numesr n=v SchuarzFunction(x.angle,i+1);
TOT10. df. gaq = n=v Gawsslwad{numer, numer.alphka(). nemer.b=ta(}, nem=r.al), muner.b{}):
dounble nem = Hath.abs cintegrate (GOI]) ;
[4] Press W., Tenholsky, 5., Vetterling, W., & Flannery, B, (1HH2]. Nu- '::E':l (GO ¥ .
merical Becipes in O, Seeond Edifieon. Cambridge University Press. double neml = vertex [14'2] .subtract (vertex [l'l'i]::' modulus(} ;
flil=nun/d=s-numl /denl ;
[5] O Connar, 1.0, &k Robertson, EF. (20001, Hermann Aman-
dusg Schwarz, Hetrieved Novwember 30 2007, fom http:/ araa- }
history. mes.st-and rews.ac uk Biographies (Schware. bl return f;

Introduction and Background

Many physical problems are expressed as differential or boundary value problems over a surface.
Often, these surfaces are or can be approximated by two-dimensional polygons. In this specific
case, one method of determining accurate solutions is by taking the polygonal domain to exist in
the complex plane and determining a conformal map, which preserves the structure of Laplace’s
equation, that restates the problem in a simpler domain, most often the upper half-plane. The
new problem, now easy to solve analytically or in closed form, is then mapped back to the
original domain. For such polygonal domains, a method of determining the specific transtorm
needed is provided by the following formula, known as the Schwarz-Christoftel transform:

f&)=A [L) "¢+ B)

In this formula, ¢ 1s an mdependent complex variable in the upper halt-plane, the €; are the
exterior angles of the polygon, the x; are 'preverticies’ of the mapping (given along the real axis),
n is the number of verticies of the polygon, and A and B are complex constants that specity the
location of the image polygon in the complex plane. The 6; must satisty

Z 0; = 2. (2)
j=1

which ensures the completeness of the image polygon [2|. Unfortunately, the Schwarz-Christoffel
formula is not easy to evaluate, and requires both effective integration algorithms and efficient,
convergent nonlinear equation solvers. Implementation of such numerical routines is not a trivial
problem, and is the goal of this project.

The first problem in calculating the Schwarz-Christoffel mapping is the evaluation of the in-
tegral given by Eq. (1). The integrand contains singularities at each of the endpoints of the
image polygon, which tend to render ordinary numerical integration routines either useless or
hopelessly slow. In addition, the presence of negative powers in f means that domains of applica-
bility for each of the subfunctions (— x _;,-)_H-if’ﬁ must be chosen so that the entire domain in and
immediately around the image polygon is meromorphic. Although several quadrature routines
have been used for this problem, the method of choice today is Gauss-Jacobi quadrature, which
uses a specially-tailored weighting function to choose points of evaluation and weights for the
points that maximize efficiency. In practice, the Schwarz-Christoffel formula is altered so that
the prevertex x,, is chosen to be both —oo and +o0o (the values are equivalent for a conformal
map, which acts on the Riemann sphere). This can always be done due to the extra degrees of
freedom contained in Eq. (1). The integrals that must be evaluated in practice in the course of

the Schwarz-Christoffel transform are of the form
n—1

[TL€—w)"rac 6

g —1 j=1
These integrals can always be written as required for Gauss-Jacobi quadrature; that is, in the
form

b
/ (2 — a)*(z — b)*(2)dz. (4)

(i
where v and 3 are real numbers greater than —1.

The points and weights of a Gauss-Jacobi quadrature are calculated here using a routine from
Numerical Recipes [4] which efficiently estimates and solves for the roots of the Jacobi polyno-
mials, which form the sample points just as the roots of the Chebyshev polynomials form the
sample points for standard Gaussian quadrature. These points, however, are uniformly calcu-
lated in the range [—1, 1], and the integrals must be adjusted slightly to conform to this range.
During the calculation of the preverticies, discussed below, the z in Eq. (4) will be restricted
to the real axis; however, in direct calculations once the preverticies have been found, the z will
generally be tully complex, which must be dealt with by the program.

The second problem is the Schwarz-Christoftel parameter problem, where the z; in Eq. (1)
are calculated. As described in [2], a series of nonlinear, constrained equations can be formed
from the requirement that the image polygon and the desired polygon be similar (the constants
A and B in Eq. (1) then ensure congruency). Written out, there are n — 3 linear equations in
n — 3 unknowns, once the extra degrees of freedom have been taken care of by arbitrarily giving
three of the x; precise values. Here, as in the literature, we take 1 = —1 and zo = 0 1n addition
to the already-defined x, = +00. The equations to be solved are then

‘ f;i; 1]._.[j—l {C o mj)_ﬁ}'jfﬁdC‘ ‘Tﬂj — TL"j_l‘ B
| f:lz [T, (C— ;) Yild(]| [wy — wy]|

where 2 = 3,4,...,n — 1. However, there is an additional complication, as the order of the
preverticies on the real axis matters. The extra constraint can be expressed as

0, (5)

D<oy <oy <...< Ty 1 < O0. (6)

The nonconstrained problem is relatively easy to solve; however, the constraint prevents a naive
application of a Newton’s Method variant to this problem. To get around this, Trefethen in (3]
suggests a simple change of variables that ensures the inequalities of Eq. (6). Take a new series
of variables, x;, and let
X;=mn(z; —x;). (7)
The resulting y; will automatically obey Eq. (6), and the original z; are found by the simple
inverse formula
C— X;
Tj=1x,_1+ev. (8)

This new set of equations in the yx; 1s readily solved by a variant of Newton’s Method that does
not require an explicit calculation of the Jacobian matrix (which would be hopelessly complex),
but rather uses progressive estimates.

Example mappings produced by the program

Development

The sottware 1s written entirely in Java, with testing in MATLAB. The entire development of the
program 1s designed to be achieved n stages by attacking the subproblems individually. Several
important classes are described below:

e class Complex - this class stores and performs arithmetic on complex numbers, which are not
directly supported by Java. Several of the methods, including the multiplication and division
algorithms, are designed to run as quickly as possible while avoiding intermediate overflow
and floating-point error propagation. The multiplication method, for instance, requires only
three real multiplications rather than four.

e class GaussJacobiWeights - this class calculates and stores the sample points and weights for a
given Gauss-Jacobi quadrature over the interval [—1, 1]. This routine uses Newton’s Method
to find the roots of the Jacobi polynomials, which are the sample points for the integral, and
was taken and translated from [4].

e class SchwarzFunction - this class evaluates the integrand of a given real-valued Schwarz-
Christoffel integral, serving as a storage class for data of this kind.

e class GaussQuad - this class accepts as input ¢, a, b, a, and 3 from Eq. (4). For an arbitrary
integral in that form, shifting and scaling the bounds produces the equivalent integral

[(= 1P+)l + i,)

1
where b = ”—';’ and ¢ = b — m = m — a. This integral is then evaluated using the sample
points and weights given by the GaussJacobiWeights class and returned. For any GaussQuad
object, varying numbers of sample points (and thus varying accuracy) are accepted by its
integrate() method.

e class RealNewtonRaphson - this class accepts an array of vertices and calculates the necessary
prevertices as well as the constants A and B from Eq. (1). The method employs a standard
Newton-Raphson method to solve the Eq. (5). At each step, an approximate Jacobian matrix
for the function is calculated using a forward-difference method in each dimension; the step

vector is then solved for using an LU factorization on the equation

i

367 = f (10)

where J represents the Jacobian, 0 the step vector, and f the current function vector. Note
that by employing a forward-difference method to find the Jacobian, the number of function
evaluations can be cut in half, as the current function vector can be reused in the Jacobian
calculation.

e class ForwardGaussQuad - this class, using already-calculated values for the prevertices, eval-
uates the Schwarz-Christoftel integral at a given point. To minimize error caused by the
presence of singularities near the path of the integral (the singularities at the endpoints are
handled by the Gauss-Jacobi quadrature), the path of integration is divided recursively such
that no segment is closer to a singularity than one-half its length, a technique employed in
13]. Such recursive subdivision is known as compound Gauss-Jacobi quadrature.

e class SchwarzChristoffel - this class runs the graphical user interface and calls RealNewton-
Raphson and ForwardGaussQuad when necessary. The graph itself has the ability to show
axes and manually adjust window parameters.

In future iterations of the project, a new set of routines will be implemented to calculate
continuous Schwarz-Christoffel problems. Immediately following from Eq. (3) above, we have

f'(2) = ATT(C =)0, (11

To change this into a continuous problem, we can rewrite this as

Lyl g n(z—a;
f!(2) = Aem 2=t ~lilnle=2j) (12)
Then, defining the natural logarithm function as single-valued in the upper half-plane, except
where z; = z. f' becomes an analytic function in the required domain. To formulate the

continuous-boundary problem, we simply replce the sum in Eq. (12) with an integral, and
integrate the entire function to find f(z):

© 1% eV n (€
f(z) _ A/ E%f 9‘3_H('L}lu{i’_';'-;}d'f'dc + B.} (13)
Jo
where 6(x) represents the amount of turning per unit length on the real axis, such that

/ " 0(a)de = o (14)

—_ cx';

The continuous problem therefore has an extra subproblem to solve, namely, the solution of the
integral equation, Eq. (13), to find #(z) at every x.

Results

Results on polygons eleven and fewer vertices suggest that the program has both a reasonable
error tolerance and reasonable computation time requirements. Efficiency has been gained by
implementing a two-step integration in ForwardGaussQuad which deals with the real and complex
parts of the path integral separately and minimizes the average depth of recursion.

GO0 T I] I T I

a00

N
=
=

300

200

Mewton-Raphson calculation time (ms)

100

4 5 G T g 3 10 11
Murnber of wertices

0]]]]

Runtime data for a typical computer

