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Development
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Calculation of
- o o o o o > prevertices using  The software Is written entirely in Java, with testing in MATLAB. The entire development of the
. Newton-Raphson  program is designed to be achieved in stages by attacking the subproblems individually. Several
File_ View = method important classes are described below:
i e class Complex - this class stores and performs arithmetic on complex numbers, which are not
i directly supported by Java. Several of the methods, including the multiplication and division
T2 algorithms, are designed to run as quickly as possible while avoiding intermediate overflow
[ and floating-point error propagation. The multiplication method, for instance, requires only
= Computation of three real multiplications rather than four.
I geometrically e class GaussJacobiWeights - this class calculates and stores the sample points and weights for a
T similar shape given Gauss-Jacobi quadrature over the interval [—1, 1]. This routine uses Newton’s Method
051 to find the roots of the Jacobi polynomials, which are the sample points for the integral, and
O P O D O :Zg:m was taken and translated from [l]
I e class SchwarzFunction - this class evaluates the integrand of a given real-valued Schwarz-
™ Christoffel integral, serving as a storage class for data of this kind.
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e class GaussQuad - this class accepts as input ¥, a, b, o, and 3 from Eq. (4). For an arbitrary
integral in that form, shifting and scaling the bounds produces the equivalent integral

1
114 r+3+1 : 3.
L " [ (¢ —1)"(C+ 1) ¢YP(eC +m)dC, (9)
L1z J—1
+1.1i +[' . . . .
: where b = %= and ¢ = b —m = m — a. This integral is then evaluated using the sample
+0.9i - - 0 . . y
Lo v points and weights given by the GaussJacobiWeights class and returned. For any GaussQuad
g _ . object, varying numbers of sample points (and thus varying accuracy) are accepted by its
= CaICUIat_Ion 0 integrate() method.
Lo aUX|I|ary ] ‘ 1
o3 constants e class RealNewtonRaphson - this class accepts an array of vertices and calculates the necessary
Loz . .
Lo prevertices as well as the constants A and B from Eq. (1). The method employs a standard
~0.40.3-0.2-0.1 | 010203 040506070809 1011121314 . . .
A I Newton-Raphson method to solve the Eq. (5). At each step, an approximate Jacobian matrix
T2 for the function is calculated using a forward-difference method in each dimension; the step
———O.3i - . 0 . - - .
Lo vector is then solved for using an LU factorization on the equation
Jor=f, (10)
Sum mary of process where J represents the Jacobian, 4. the step vector, and f the current function vector. Note
that by employing a tforward-difference method to find the Jacobian, the number of function
evaluations can be cut in half, as the current function vector can be reused in the Jacobian
calculation.
I N t rO d u Ct | O N e class ForwardGaussQuad - this class, using already-calculated values for the prevertices, eval-
uates the Schwarz-Christoftel integral at a given point. To minimize error caused by the
Many physical problems are expressed as differential or boundary value problems over a surface. presence of singularities near the path of the integral (the singularities at the endpoints are
. : . . . . .r o 4] Vs T el I . i il R IL S, LI . I, |
Often, these surfaces are or can be approximated by two-dimensional polygons. In this specific handled by the Gauss-Jacobi quadrature), the path of integration is divided recursively such
case, one method of determining accurate solutions is by taking the polygonal domain to exist in that no segment is closer to a singularity than one-half its length, a technique employed in
.. . . . . R L S R, P et ) 1 I DR I S .
the complex plane and determining a conformal map, which preserves the structure of Laplace’s [3]. Such recursive subdivision is known as compound Gauss-Jacobi quadrature.
equation, that restates the problem in a simpler domain, most often the upper half-plane. The e class SchwarzChristoffel - this class runs the graphical user interface and calls RealNewton-
new problem, now easy to solve analytically or in closed form, is then mapped back to the Raphson and ForwardGaussQuad when necessary. The graph itself has the ability to show
original domain. For such polygonal domains, a method of determining the specific transform axes and manually adjust window parameters.

needed is provided by the following formula, known as the Schwarz-Christoftel transform:

f(z)=A4A [ ” H (¢ —z,)7%"d¢ + B.
JO j=1

In future iterations of the project, a new set of routines will be implemented to calculate
continuous Schwarz-Christoffel problems. Immediately following from Eq. (3) above, we have

(1)

In this formula, ¢ is an independent complex variable in the upper half-plane, the 6; are the
exterior angles of the polygon, the x; are ‘preverticies’ of the mapping (given along the real axis),
n is the number of verticies of the polygon, and A and B are complex constants that specify the
location of the image polygon in the complex plane. The 6; must satisfy

Z 0; = 2m, (2)
j=1

which ensures the completeness of the image polygon [2]. Unfortunately, the Schwarz-Christoffel
formula is not easy to evaluate, and requires both effective integration algorithms and efficient,
convergent nonlinear equation solvers. Implementation of such numerical routines is not a trivial
problem, and is the goal of this project.
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Results

Results on polygons eleven and fewer vertices suggest that the program has both a reasonable
error tolerance and reasonable computation time requirements. Efficiency has been gained by
implementing a two-step integration in Forward GaussQuad which deals with the real and complex
parts of the path integral separately and minimizes the average depth of recursion.



