
Interactive Geometry in 3D

Jacob Welsh
TJHSST Computer Systems Lab Senior Research Project

2007-2008

June 11, 2008

Abstract

The goal of this project is to write a program that allows its user
to create and manipulate a complex system of geometric objects in
space. From a few basic object types, interesting and useful construc-
tions can be built. This could be useful for education, mathematical
or scientific research or visualization, or just for fun.

Keywords: Euclidean geometry, human-computer interaction,
educational computing, scientific visualization

1 Background

For a while there has been software for computer assisted design (CAD),
which utilizes a few basic shapes and techniques such as snapping and nu-
meric entry to create precise, polished diagrams of a product that can then
be used in its manufacturing.

A similar sort of program is used for 3D modeling, in which the user
constructs polygon meshes in three dimensions: freehand; with snapping;
and numerically. My program aims to be more focused on geometric objects
and dynamic preservation of their relationships as some are manipulated.
The leading example of this is a commercial program called The Geometer’s
Sketchpad. Its interface is heavily mouse-based and rather inefficient, and it
is limited to two dimensions. However, the fact that it is possible to build
primitive pseudo-3D constructions in it illustrates the power behind the idea

1



of geometric construction. The basic philosophy for the user interface of my
program comes from the modeling program Blender and the text editor VI.

A somewhat different and interesting approach is taken by the SKETCH
project of Zeleznik, Herndon and Hughes of Brown University from the mid-
1990’s, and the commercial program SketchUp. With these programs, the
goal is quick, informal visualization of a scene from the user’s imagination,
much like a pencil-and-paper sketch in three dimensions. SKETCH is partic-
ularly noteworthy for making extensive use of mouse gestures for determining
how to interpret the drawn lines. My program will aim for a simultaneous
use of mouse and keyboard for maximum flexibility and efficiency.

2 Project Development

In the first quarter I worked on the basic structure of the program. A variety
of functions were developed abstracting common graphics and mathematical
routines. SDL and OpenGL were used as the underlying graphics libraries,
but the core routines of the program are ignorant of that, calling routines
that deal with geometric objects – points, lines, and the space that contains
them. The original conception was that two parallel display backends would
be implemented: one using OpenGL for full 3D drawing and performance,
and software-only SDL routines to offer more limited support for computers
lacking OpenGL. This approach was soon abandoned due to the complexity
and confusion it added to the prototype program, but may eventually be
added back. Another of my early ideas was that all objects in the scene
would be linked in a multidirectional tree, which would allow only the neces-
sary dependent objects to be recalculated when their parents moved. Again,
this approach had to be greatly simplified for the sake of getting a working
prototype off the ground.

Second quarter saw the various components of the program come together
in a functional way. After extensively considering the data structures rep-
resenting the geometry, I settled on a linked list of all the objects in the
scene, with pointers to parent objects when necessary for correct drawing
and calculation. This linked list is not actually global to the program, but
rather contained in a ”space” superstructure. In addition to providing a
handy place for storing information like 3D projection paramaters, a space
completely contains a scene. This allows future features such as multiple
spaces displayed in separate tabs or panes. With the data structures layed

2



out properly, I created wrapper functions for their memory management and
linking, enabling core code to be easy to write as well as comprehend. From
the programmer’s standpoint, objects such as points and lines can be added
to the scene and assigned locations with ease.

Once the code was functioning properly, it became possible to focus on
the implementation of user interface. The first task was to be able to easily
select desired objects from a potentially dense scene. The mouse pointer
should not have to exactly touch the desired object; rather, the program
should select the most reasonable object given the position of the pointer.
For selecting points, this is done by simply finding the point closest to the
pointer location. However, since the scene is in three dimensions, the distance
in question is actually from the point to the ray through the mouse pointer
from the viewing point, and can be found through vector algebra. A similar
principle applies to objects other than points, but it was not clear whether
such rules would work well in combination to find the most desired object.

To resolve this doubt I employed some field theory. A point can be
thought of as emitting a spherical field, decreasing in strength with distance
from the point. Similarly, a line segment emits a cylindrical field with spher-
ical end caps, again representing the shortest distance to a given point in
space. Thus, for a certain location of the mouse pointer, the desired selec-
tion was the object whose field was strongest at that location. This has a
flaw though; consider a line segment with endpoints. The distance to the
segment is often equal to the distance to one endpoint. This can be resolved
by scaling down the strength of the segment’s field. Distant locations will
select one of the endpoints, but sufficiently close locations can still select the
segment itself.

The third quarter was focused on further development of the program’s
user interface. Multiple interaction modes were established, to be switched
through using the keyboard. In Point mode, the user simply clicks to create
points; in Line mode each click creates an endpoint of a line segment. When
drawing lines, Snap mode can be enabled, causing lines to attach to existing
points rather than create new ones. This allows a beginning step toward the
heirarchically related objects that are the goal of the program. In Selection
mode, points can be selected based on their distance from the mouse pointer
as described above, and moved around simply by dragging the mouse. Since
the lines are defined only by their parent points, they are always redrawn in
the updated position.

In the fourth quarter I worked on expanding the program’s feature set

3



with some of the more interesting aspects. Code for storing and drawing
circles was developed, as well as the beginning of routines to calculate circle
intersections. The program had been using three-dimensional math all along,
but the user is now able to rotate the view and thus move objects out of
the plane of the screen. However, I encountered some problems with the
projection of screen to space coordinates, leading to a variety of problems
with the 3D view that are as of yet unresolved.

3 Results

The current program can create points and line segments that connect to
each other. The point closest to the mouse pointer can be highlighted, using
the selection algorithm. The demonstration works well in two dimensions,
and is scalable to three although this is currently not functioning correctly.

The most powerful aspects of the program would come with the imple-
mentation of constrained objects, such as a point lying on a line segment
or point of intersection, and the addition of circles. With this, principles of
Euclidean geometry can be dynamically illustrated, and more sophisticated
features will follow.

Additional future work on this program could include more sophisticated
three-dimensional shapes such as planes, spheres, and loci. The user interface
will need much improvement to make it easy for beginners to learn.

4


