
Reinforcement Learning in Connect 4

Michael Yura
2007-2008

Introduction:
Although an AI is often thought of

as being only as intelligent as its
programmer, this is not exactly the
case; this project will attempt to
create an dynamically learning
Machine Learner for Connect 4 by
using supervised reinforcement
learning, with each Learner saving
the way that it will play into text
files, each with the way that it will
play for a given board layout.

Procedures:
I have currently

programmed the Connect 4
game itself, as well as
created an “ML” (Machine
Learner) abstract class that
other ML's will be based
upon, with methods to load
save its board data. This ML
appends all of its board data
into a single text file and
saves the corresponding
probability data its own
smaller file, which is
rewritten after the ML plays
a game.

I currently have an ML
that does not change the
way it places pieces, playing
completely randomly; I plan
to create ML's that will
change the way they play to
different degrees, some
radically changing their
strategies after each game,
and others doing so to a
more moderate degree. The
way that each ML changes
its strategy will be written
by myself, meaning that this
is not entirely independent
learning, but Supervised
Reinforcement Learning.

Background:
I expect to have an ML that

throughly and hopefully quickly
learns to play Connect 4 to an
advanced level. Through this
project, I hope to learn how fast and
to what quality reinforcement
learning allows for the learning of a
simple game; these methods can
hopefully be extended to other,
more complex tasks for machines to
learn.

Connect 4 has already been
solved by James D. Allen and Victor
Allis; I will attempt to compare the
way the ML plays to the strategies
outlined in Allis's A Knowledge-based
Approach of Connect-Four

Expected Results:
Through this project, I hope to find a degree of reinforcement

learning that allows the computer to learn to play connect 4
quickly and thoroughly. Although I am quite sure that an ML that
learns more progressively will in the end turn out to be better, it
may not be the most efficient, due to the time and the size that it
would take to create one that would surpass the abilities of an ML
whose data is more hastily created. I hope that this project may
add to the creation process of AI's.

A board of:

Would be represented in the board data
file as:

1 [0,0;0][0,1;0][0,2;0][0,3;0][0,4;0]
[0,5;0][1,0;1][1,1;2][1,2;0][1,3;0]
[1,4;0][1,5;0][2,0;1][2,1;0][2,2;0]
[2,3;0][2,4;0][2,5;0][3,0;0][3,1;0]
[3,2;0][3,3;0][3,4;0][3,5;0][4,0;2]
[4,1;0][4,2;0][4,3;0][4,4;0][4,5;0]
[5,0;1][5,1;0][5,2;0][5,3;0][5,4;0]
[5,5;0][6,0;0][6,1;0][6,2;0][6,3;0]
[6,4;0][6,5;0]

Similarly, a probability data file of:

[94.0,15.6,77.2,92.8,100.0,43.3,0.1,]

Would represent a:

94.0/423.0 (22.22%) chance of placing
in Column 0

15.6/423.0 (3.69%) chance of placing in
Column 1

77.2/423.0 (18.25%) chance of placing
in Column 2

92.8/423.0 (21.94%) chance of placing
in Column 3

100.0/423.0 (23.64%) chance of placing
in Column 4

43.3/423.0 (10.27%) chance of placing
in Column 5

0.1/423.0 (0.02%) chance of placing in
Column 6

