
Reinforcement Learning in Connect 4 Michael Yura

2007-2008
Introduction:

Although an AI is often thought of as being
only as intelligent as its programmer, this is not
exactly the case; this project will attempt to
create an dynamically learning Machine Learner
for Connect 4 by using supervised reinforcement
learning, with each Learner saving the way that
it will play into text files, each directing the way
that it will play for a given board layout.
Several variations of these “ML”s will be
programmed with differing algorithms, which
will play against one another thousands of times,
and the results will be recorded to see which
variation is able to adapt the best.

Procedures:
I have programmed the Connect

4 game itself, as well as created an
“ML” (Machine Learner) abstract class
that other ML's will be based upon,
with methods to load save its board
data. This ML appends all of its board
data into a single text file and saves
the corresponding probability data its
own smaller file, which is rewritten
after the ML plays a game.

There are four ML types: NONE
(NON), CONSTANT (CON), LINEAR
(LIN), and LOGARITHMIC (LOG). Each
variation multiplies its values, P, by:

if it wins a game and:

if it loses.
The variable p is determined by

the ML’s type.
NONE:
CONSTANT:
LINEAR:
LOGARITHMIC:

Where t is the number of the
current turn, T is the total number of
turns, and k is an input number.

Each ML played 10,000 games
against each other ML type, and the
results of the games were recorded
and graphed.

Background:
I have created a dynamically learning ML

(Machine Learner) for Connect 4. These ML's will
learn through reinforcement learning. If they
are successful (and win the game), they will do
what they did more often; conversely, if they are
not successful (and lose the game), they will do
what they did less often.

Through this project, I hope to learn how
fast and to what quality reinforcement learning
allows for the learning of a simple game; these
methods can hopefully be extended to other,
more complex tasks for machines to learn.

Connect 4 has already been solved by James
D. Allen and Victor Allis, and their strategies
have been outlined in Allis's A Knowledge-based
Approach of Connect-Four. The use of
algorithms in reinforcement learning has also
been explored in Ronald J. Williams’s Simple
Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning.

Results and Conclusions:
Although each ML played

against every other ML thousands
of times, there was no
significant change in how well
each ML could do. In every
instance, the first player to
place a piece had an advantage,
and won a significantly greater
percentage of the time than the
player who acted second. Any
positive self-improvement that
may have occurred was not
evident in the results of the
tests.

The ML algorithms are
designed so that they can
significantly improve against a
static opponent, one that uses
the same strategy every time –
the Mls cannot adapt quickly and
correctly enough to face a
human player or another ML,
whose game strategy is
determined randomly.

This failure to significantly
improve is not merely the fault
of the learning concept, but of
the situation that the Mls were
put into as well. More complex
algorithms such as LINEAR and
LOGARITHMIC depend on the fact
that the opposition’s moves were
supposed to be in its favor, so
that the algorithm can “know”
what to avoid and what to
repeat; when facing a randomly-
playing ML, the algorithm is
rendered useless.

A board of:

Would be represented in the board data file as:
[0,0;0][0,1;0][0,2;0][0,3;0][0,4;0][0,5;0][1,0;1]
[1,1;2][1,2;0][1,3;0][1,4;0][1,5;0][2,0;1][2,1;0]
[2,2;0][2,3;0][2,4;0][2,5;0][3,0;0][3,1;0][3,2;0]
[3,3;0][3,4;0][3,5;0][4,0;2][4,1;0][4,2;0][4,3;0]
[4,4;0][4,5;0][5,0;1][5,1;0][5,2;0][5,3;0][5,4;0]
[5,5;0][6,0;0][6,1;0][6,2;0][6,3;0][6,4;0][6,5;0]

Similarly, a probability data file of:
[94.0,15.6,77.2,92.8,100.0,43.3,0.1,]

Would represent a:
94.0/423.0 (22.22%) chance of placing in Column 0
15.6/423.0 (3.69%) chance of placing in Column 1
77.2/423.0 (18.25%) chance of placing in Column 2
92.8/423.0 (21.94%) chance of placing in Column 3
100.0/423.0 (23.64%) chance of placing in Column 4
43.3/423.0 (10.27%) chance of placing in Column 5
0.1/423.0 (0.02%) chance of placing in Column 6

p=1
p=k

p=k∗t1
p=ln T 1−ln −tT 

P=P∗ p

P=P / p

These are the graphs of the test results; the x-axis is the games played, and the y-axis is the number of games won.
 The red line represents the results for player 1, and the blue line represents player 2. Each row of the grid
represents the ML type of player 1, and each column represents the ML of player 2.

	Slide 1

