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Introduction:

Although an AI is often thought of as being 
only as intelligent as its programmer, this is not 
exactly the case; this project will attempt to 
create an dynamically learning Machine Learner 
for Connect 4 by using supervised reinforcement 
learning, with each Learner saving the way that 
it will play into text files, each directing the way 
that it will play for a given board layout.  
Several variations of these “ML”s will be 
programmed with differing algorithms, which 
will play against one another thousands of times, 
and the results will be recorded to see which 
variation is able to adapt the best.

Procedures:
I have programmed the Connect 

4 game itself, as well as created an 
“ML” (Machine Learner) abstract class 
that other ML's will be based upon, 
with methods to load save its board 
data.  This ML appends all of its board 
data into a single text file and saves 
the corresponding probability data its 
own smaller file, which is rewritten 
after the ML plays a game.

There are four ML types: NONE 
(NON), CONSTANT (CON), LINEAR 
(LIN), and LOGARITHMIC (LOG).  Each 
variation multiplies its values, P, by:

if it wins a game and:

if it loses.
The variable p is determined by 

the ML’s type.
NONE:
CONSTANT:
LINEAR:
LOGARITHMIC:

Where t is the number of the 
current turn, T is the total number of 
turns, and k is an input number.

Each ML played 10,000 games 
against each other ML type, and the 
results of the games were recorded 
and graphed.

Background:
I have created a dynamically learning ML 

(Machine Learner) for Connect 4.  These ML's will 
learn through reinforcement learning.  If they 
are successful (and win the game), they will do 
what they did more often; conversely, if they are 
not successful (and lose the game), they will do 
what they did less often.

Through this project, I hope to learn how 
fast and to what quality reinforcement learning 
allows for the learning of a simple game; these 
methods can hopefully be extended to other, 
more complex tasks for machines to learn.

Connect 4 has already been solved by James 
D. Allen and Victor Allis, and their strategies 
have been outlined in Allis's A Knowledge-based 
Approach of Connect-Four.  The use of 
algorithms in reinforcement learning has also 
been explored in Ronald J. Williams’s Simple 
Statistical Gradient-Following Algorithms for 
Connectionist Reinforcement Learning.

Results and Conclusions:
Although each ML played 

against every other ML thousands 
of times, there was no 
significant change in how well 
each ML could do.  In every 
instance, the first player to 
place a piece had an advantage, 
and won a significantly greater 
percentage of the time than the 
player who acted second.  Any 
positive self-improvement that 
may have occurred was not 
evident in the results of the 
tests.

The ML algorithms are 
designed so that they can 
significantly improve against a 
static opponent, one that uses 
the same strategy every time – 
the Mls cannot adapt quickly and 
correctly enough to face a 
human player or another ML, 
whose game strategy is 
determined randomly.

This failure to significantly 
improve is not merely the fault 
of the learning concept, but of 
the situation that the Mls were 
put into as well.  More complex 
algorithms such as LINEAR and 
LOGARITHMIC depend on the fact 
that the opposition’s moves were 
supposed to be in its favor, so 
that the algorithm can “know” 
what to avoid and what to 
repeat; when facing a randomly-
playing ML, the algorithm is 
rendered useless.

A board of:

Would be represented in the board data file as:
[0,0;0][0,1;0][0,2;0][0,3;0][0,4;0][0,5;0][1,0;1]
[1,1;2][1,2;0][1,3;0][1,4;0][1,5;0][2,0;1][2,1;0]
[2,2;0][2,3;0][2,4;0][2,5;0][3,0;0][3,1;0][3,2;0]
[3,3;0][3,4;0][3,5;0][4,0;2][4,1;0][4,2;0][4,3;0]
[4,4;0][4,5;0][5,0;1][5,1;0][5,2;0][5,3;0][5,4;0]
[5,5;0][6,0;0][6,1;0][6,2;0][6,3;0][6,4;0][6,5;0]

Similarly, a probability data file of:
[94.0,15.6,77.2,92.8,100.0,43.3,0.1,]

Would represent a:
94.0/423.0 (22.22%) chance of placing in Column 0
15.6/423.0 (3.69%) chance of placing in Column 1
77.2/423.0 (18.25%) chance of placing in Column 2
92.8/423.0 (21.94%) chance of placing in Column 3
100.0/423.0 (23.64%) chance of placing in Column 4
43.3/423.0 (10.27%) chance of placing in Column 5
0.1/423.0 (0.02%) chance of placing in Column 6

p=1
p=k

p=k∗t1
p=ln T 1−ln −tT 

P=P∗ p

P=P / p

These are the graphs of the test results; the x-axis is the games played, and the y-axis is the number of games won. 
 The red line represents the results for player 1, and the blue line represents player 2.  Each row of the grid 
represents the ML type of player 1, and each column represents the ML of player 2.
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