
TJHSST Computer Systems Lab Senior
Research Project

Development of a German-English Translator
2007-2008

Felix Zhang

June 10, 2008

Abstract

Machine language translation as it stands today relies primarily
on rule-based methods, which use a direct dictionary translation and
at best attempts to rearrange the words in a sentence to follow the
translation language’s grammar rules to allow for better parsing on
the part of the user. This project seeks to implement a rule-based
translation from German to English, for users who are only fluent in
one of the languages. For more flexibility, the program will implement
limited statistical techniques to determine part of speech and morpho-
logical information.

Keywords: computational linguistics, machine translation

1 Introduction

A perfect machine translation of one language to another has never been
achieved, because not all language expressions used by humans are gram-
matically perfect. It is also infeasible experimentally to code in every single
grammar rule of a language. However, even a basic program that translates
the basic idea of a sentence is helpful for understanding a text in a given
language.

1

1.1 Scope of Study

I will focus on a rule-based translation system, because of time and resource
constraints. I will start with part of speech tagging and lemmatization, and
then progress to coding in actual grammar rules so that sentences can be
parsed correctly, so that my program can handle more complex sentences as
I embed more rules. I will also expand the program to incorporate limited
statistical methods, including part of speech tagging and linguistic property
tagging. At best, the program should be able to translate virtually any
grammatically correct sentence, and find some way to resolve ambiguities.

1.2 Purpose

The goal of my project is to use rule-based methods input to provide a
translation from German in to English, or vice versa, for users who only speak
one of the languages. Though the translation may be simple, the program
still aids a user in that it provides a grammatically correct translation, which
facilitates understanding of even primitive translations. Basic translations of
short passages are especially helpful for users reading less formal text, as
sentence structures tend to be less complex.

2 Background and review of current litera-

ture and research

Rule-based translation is the oldest form of language processing. A bilingual
dictionary is required for word-for-word lookup, and grammar rules for both
the original and target language must be hard coded in to structure the out-
put sentence and create a grammatical translation. Most online translators
currently are based off of SYSTRAN, a commercial rule-based translation
system.

The more modern technique, statistical machine translation, is the most-
studied branch of computational linguistics, but also the hardest to imple-
ment. Statistical methods require a parallel bilingual corpus, which the pro-
gram reads to ”learn” the language, determining the probability that a word
translates to something in a certain context using Bayes’ Theorem:

They can also be used to determine linguistic properties, such as part-
of-speech and tense. Usually, statistical methods are more accurate when

2

Figure 1: Bayes’ Theorem.

the corpus used is larger (Germann, 2001). Statistical methods are consid-
erably more flexible than rule-based translation, because they are essentially
language-independent. Google Translate, which has access to several ter-
abytes of text data for training, currently is developing beta versions of Ara-
bic and Chinese translators based on statistical methods. Most research is
being done with much more funding and resources than my project, and is
thus much more advanced than my scope.

Statistical methods can also be implemented in a trivial manner, in which
the tag, translation, or other linguistic component of a word is not based on
context, but only how frequently the tag is associated with the given word in
a corpus, regardless of context or other factors. This simpler implementation
will be used in my program.

3 Development

The main components to a rule-based translator are a bilingual dictionary,
a part of speech tagger, a morphological analyzer that can identify linguistic
properties of words, a lemmatizer to break a word down to its root, an
inflection tool, and a parse tree.

3.1 Dictionary

The dictionary stores a German word, its part of speech, its English trans-
lation, and any other data relevant to its part of speech, for example, for
nouns, it also lists its plural form and gender. A large dictionary would
be impractical for testing purposes, so I only include pronoun forms, con-
junctions, and articles, with only a few nouns and verbs. These entries are
stored in a hashtable, with German words as keys and English translations
as values.

3

3.2 Part of speech tagging

The program first attempts to tag words in the input sentence using the
freely available TIGER corpus, which consists of 700,000 German tokens,
with each token manually assigned a part of speech. For large, full sentences,
the program stores the entire corpus into a hashtable. Each unique word in
the corpus serves as a key, while each table value is a list of tuples. Each tuple
represents a different part of speech assigned to the word in the corpus. The
first element in the tuple is the part of speech, while the second is a number,
indicating the frequency of the tag’s occurrence. For single words and short
phrases, it is more efficient to search for the single word in the corpus, and
incrementing a separate counter for the occurrences of each different part of
speech assigned to it. When a word, usually a noun or verb, is unable to be
looked up in the corpus, a rule-based system is used as backoff. These rules
are specific to the language being translated. For example, if a word is in
between an article and a noun, it will be tagged as an adjective.

3.3 Morphological Analysis

Morphological analysis would use definite articles, suffixes, and adjective
endings to determine linguistic properties such as gender, case, tense and
person. It generates possible pairs of gender and case for nouns, and tense
and conjugation for verbs. Two separate sets of pairs are generated for
articles and modifiers, and the final list of possibilities is derived from the
intersection of these two sets. To reduce ambiguity, a method for noun-verb
agreement is used to determine the subject of the sentence. This information
is used for lemmatization.

Morphological analysis can also be implemented statistically. Since each
token in the TIGER Corpus is also assigned linguistic information such as
gender, case, and number, the likelihood of a word having certain linguistic
properties can be calculated. The simplest calculation would be for gender,
since singular words will not change gender in different contexts.

3.4 Noun-phrase chunking

The purpose of noun-phrase chunking is to collate words in a sentence which
would group together to form a sentence element, such as the subject. A
sentence element will typically consist of more than just a single word. Not

4

only the noun, but also any articles and modifiers are included, such as “the
large man”, instead of just “man”. The program searches for nouns in the
sentence, and finds the closest modifiers and articles to group into a “chunk”,
which is later identified as a specific sentence element.

3.5 Noun-verb agreement

Since each word will often generate several different possibilities during mor-
phological analysis, a method for noun-verb agreement is used to reduce
ambiguities. The properties of the nouns nearest to the verb in the sentence
are crosschecked with the properties of the verb, according to conjugation. A
singular noun, if next to a singular third-person verb, will most likely be the
subject of the sentence. If two nouns in the sentence match the verb, the first
one is taken as the subject, as this word order is more common. Once the
subject has been determined, the program removes the possibility that any
other nouns could be the subject. This method helps to disambiguate verbs
and nouns, by reducing the possibilities of gender, case, tense, and person.
In testing, this method helped to reduce ambiguities to about one per word.

3.6 Lemmatizer

The lemmatizer takes information from the morphological analysis and breaks
a word down into its root form. For nouns, this means that plural nouns
should be reduced to singular form, and suffixes resulting from different gram-
matical cases should be removed. When the program encounters a word that
may be plural, it attempts to remove any of the common verb endings from
the word: -e, -en, -er, -ern, and -s. For verbs, any ending from conjugation
or tense should be removed. The program takes the few possible conjugation
endings, ”-e”, ”-st”, ”-t”, and ”-en”, removes them, and adds ”-en” to the
root to render the infinitive form of the word. The prefix for past-tense verbs,
”ge-”, is also searched for and removed. This saves considerable space in the
dictionary, as I do not have to code in every inflected form of every word.

3.7 Parse tree

The most rudimentary form of this method comes in two parts. First, the
program, given phrase chunks with the linguistic properties of the noun or
verb, assigns the chunk to a specific sentence element. For example, nouns

5

that are in the nominative case, regardless of number, will always be subjects,
accusative nouns will always be direct objects, and verbs in the present tense
will be main verbs. The program then assigns a priority number, based on
where the sentence elemnt normally would occur in an English sentence. For
example, the subject will come before the main verb and the direct objects,
and have a priority of 1, while the indirect object comes at the end, with a
priority of 5. A more advanced version of the parse tree arranges the sentence
based on dependency grammar. Verbs connect from the subject to the direct
object, and articles and adjectives are nodes of nouns. In translation, this
tree must be rearranged to accommodate the target language’s grammar.

3.8 Inflection

Since the dictionary lookup will only produce the root form of the translated
word, a simple inflection tool is used to conjugate words, once translated into
English. Inflection requires the information from the morphological analysis,
which it then uses to add endings to words. Words marked as plural add
an ”-s” or ”-es” to the end, as do singular verbs, depending on whether
the root word ends in a consonant or a vowel. Also taken into account are
common ending changes, such as words ending in ”-y” turning into ”-ies”
in the plural, and past tense endings for weak verbs, which always follow
a pattern of adding “-ed” to the ending. In addition to conjugation, the
method also capitalizes the first word of each sentence, and adds a period to
the last word of the sentence, assuming the sentence is a statement.

3.9 Implementation of Statistical Methods

Part of speech tagging and morphological analysis were chosen for statistical
implementation, since the TIGER Corpus readily came with the information
for each word. The program creates a hashtable, with each unique word
appearing in the corpus as a key, and all tags associated with the word,
along with a frequency count, as the value.

6

4 Testing

4.1 Rule-based Methods

Testing is conducted through input of sentences with new features. To test
my lemmatizing component, I would input various inflected forms of a word
to check the uniformity of the program’s output. Varying sentence struc-
tures can also serve as a functional test to check the validity of newly coded
grammar rules in the parse tree.

4.2 Statistical Methods

Both statistical methods are tested using similar techniques. As the program
goes through each word in the corpus, it checks the tag that the program
determines is most likely to be assigned against the one that appears on the
line with the word. The program maintains a count of the “matches” that
are made, which it uses to determine a percent accuracy.

5 Results

My program is able to translate a simple German or English sentence into
the other language, provided the word is known in the lexicon. A statistical
tagger correctly resolves most ambiguities in words. The project fulfills its
purpose as a simple translator with basic grammar rules and basic statistical
techniques, but would need an implementation of more advanced statistical
methods to attain more flexibility in sentence structure parsing.

5.1 Word Ambiguity

In German, many words can be taken to very different meanings depending
on the contexts. For example, the German pronoun ”sie” can be translated to
”she”, ”her”, ”they”, ”them”, or ”you”. Though the program does attempt
to resolve as many ambiguities as possible using noun-verb agreement, there
still exist cases wherein even a native human speaker of German would have
trouble disambiguating, such as a sentence in which both nouns could possi-
bly be the subject.

7

Figure 2: The rule-based translation component, running a translation on
the sentence, “den Mann machen die kleinen Kinder.”

8

5.2 Encoding Problems

A characteristic unique to the German language is the use of special char-
acters in its alphabet, such as diacritic marks. Due to program constraints,
these characters can not be expressed directly during input, instead substi-
tuting them for their closest equivalents: ö is expressed as ”oe”, while ß is
expressed as ”ss”. An issue with the corpus lay in the corpus compilers’
attempt to encode the special characters, which ended up as garbled ASCII
code when the corpus was read into the program.

5.3 Corpus Size

Though a larger corpus typically allows for greater accuracy in tagging, file
size can be a constraint in many cases. The TIGER Corpus, consisting of
700,000 lines, is 42 megabytes in size, making it impractical for web-based or
portable use. The amount of time spent by the program while going through
the corpus also presents a problem of convenience and efficiency.

5.4 Stem Changes

In general, most inflected verbs in German add a suffix, depending on its
conjugation - first person singular adds an ”-e”, second person singular adds
an ”-st”, and third person singular adds ”-t”. However, for several exceptions
in German, the root word itself alters slightly in singular conjugations. For
example, the verb ”lesen”, which means ”to read”, has a vowel change when
conjugated in the third person singular, ”er liest”, as opposed to the expected
”er lest”. Only certain verbs follow this rule, which means the program
cannot simply change the vowel stem when it encounters such a conjugation,
but the verbs that express this quality are too commonly encountered to
simply disregard. A way around this problem is to include an indicator in the
dictionary entry for the word, noting that the verb is irregularly conjugated.

Similarly, German verbs are divided into ”strong” verbs and ”weak”
verbs. Weak verbs follow a common pattern in the present perfect tense,
adding a ”ge-” prefix and a ”-t” suffix. The program’s morphological anal-
ysis easily detects weak verbs. Strong verbs, however, have no set pattern
when in the past tense, including many vowel changes. For strong verbs, the
only way to resolve the problem is by manually including the past tense form
for each strong verb in the dictionary.

9

To a lesser extent, this is also a problem encountered during English
inflection. The inflection method of this program results in much overreg-
ularization, because not all English verbs follow the simple “-ed” ending -
Many also have stem changes, such as “see” to “saw”.

5.5 Complexity

Rule-based translation, by definition, is confined to only a defined set of
grammatical structures it can parse. In the program’s priority-number based
method of parsing, for example, German sentences can only be rearranged
in one specific order. Thus, in terms of flexibility, statistical methods are
functionally superior, as they are language-independent, and can be trained
for virtually any corpus of sufficient size.

5.6 Statistical Accuracy

According to Charniak (1997), when assigning part-of-speech statistically,
the accuracy of tagging should approach 90 percent when each word is sim-
ply assigned its most frequently occurring tag. Running the part-of-speech
tagger on the sample corpus confirms this, yielding an accuracy of 87.977%
on TIGER’s full 746,660-word corpus. The morphological analyzer does not
perform as well, reaching 73.716% accuracy on the full corpus. The morpho-
logical analyzer’s decreased accuracy is largely because a word’s linguistic
properties, notably grammatical case, are heavily dependent on context.

6 Conclusion

In the context of this German translation program, there is no definite way
to compare the accuracies of statistical and rule-based machine translation
methods. Simple statistical methods yield a relatively high accuracy, given
their primitive method of implementation. The seemingly small error rate,
however, translates to a number of errors in a large corpus too large to be
acceptable for any professional translation program. Likewise, rule-based
translation will provide accurate results, but is bound to a much narrower
frame of function.

10

7 Recommendations

Given more time, the program’s statistical methods can be expanded to more
complex algorithms, as context-based methods tend to yield much higher
accuracy. Ideally, the entire translation process should be written using sta-
tistical methods, as the program becomes effectively language-independent.

References

[1] Brants, Thorsten, “TnT: a Statistical Part-of-Speech Tagger”, Applied
Natural Language Conferences, pp. 224-231, 2000

[2] Chanod, J, and Tapanainen, P, “Tagging French: Comparing a Statistical
and a Constraint-Based Method”, Proceedings of the Seventh Conference
on European Chapter of the Association for Computational Linguistics,
pp. 149-156, 1995

[3] Charniak, E, “Statistical Techniques for Natural Language Parsing”,The
American Association for Artificial Intelligence, pp. 33-43, 1997

[4] Germann, U, “Building a Statistical Machine Translation System from
Scratch”, Proceedings of the Workshop on Data-driven Methods in Ma-
chine Translation, pp. 1-8, 2001

[5] Lezius, W, “A Freely Available Morphological Analyzer, Disambigua-
tor and Context Sensitive Lemmatizer for German”, Proceedings of the
COLING-ACL, pp. 743-748, 1998

[6] Nallapati, Ramesh, “Capturing Term Dependencies Using a Language
Model Based on Sentence Trees”, Center for Intelligent Information Re-
trieval, pp. 383-390, 2002

[7] Schulte, S, “Inducing German Semantic Verb Classes from Purely Syn-
tactic Subcategorisation Information”, Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pp.223-230,
2002

[8] Tiger Corpus, http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/

11

Appendix: Statistical Method Code

#Statistical part of speech tagging - This program tags words based on their most frequently occurring tag in the corpus.

def main():

en = []

de = []

corpusdict = {}

de = readcorpus("tiger_release_aug07.export")

morphotest(de)

hashtable = findpos(de)

word = raw_input("Enter word: ")

morphosingleword(word,de)

if word in hashtable.keys():

print hashtable[word]

def findmaxprob(list): #finds the most frequently occurring tag

max = 0

maxtag = ""

for x in list:

if x[1] > max:

max = x[1]

maxtag = x[0]

return maxtag

def possingleword(word,de): #functions the same way as a hashtable, but only stores data for one word - more efficient for single-word inputs

pos = [[]]

for x in de:

list = x.split(’\t’)

if list[0][0] is not "#" and list[0][0] is not "%" and list[0][0] not in "1234567890":

noblanks = removeblanks(list)

encountered = False

if word == noblanks[1] or word == noblanks[0]:

if pos == [[]]:

pos = [[noblanks[2],1]]

for y in pos:

12

if y != []:

if y[0] == noblanks[2]:

y[1] = y[1] + 1

encountered = True

if encountered == False:

pos.append([noblanks[2], 1])

print word, pos

print "Most likely tag: " + findmaxprob(pos)

def morphosingleword(word,de): #functions the same way as a hashtable, but only stores data for one word - more efficient for single-word inputs

pos = [[]]

for x in de:

list = x.split(’\t’)

if list[0][0] is not "#" and list[0][0] is not "%" and list[0][0] not in "1234567890":

noblanks = removeblanks(list)

encountered = False

if word == noblanks[0]:

if pos == [[]]:

pos = [[noblanks[3],1]]

for y in pos:

if y != []:

if y[0] == noblanks[3]:

y[1] = y[1] + 1

encountered = True

if encountered == False:

pos.append([noblanks[3], 1])

print word, pos

print "Common tag: "

mostlikely= findmaxprob(pos).split(".")

print mostlikely[1:len(mostlikely)]

def readcorpus(filename):

s = open(filename).read().split(’\n’)[:-1]

return s

def findmorph(readin):

list = []

lookup = {}

13

for x in readin:

list = x.split(’\t’)

if list[0][0] in "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ":

noblanks = removeblanks(list)

register(lookup, noblanks[0], noblanks[3])

return lookup

def findpos(readin):

list = []

lookup = {}

for x in readin:

list = x.split(’\t’) #splits line into list

if list[0][0] != "#" and list[0][0] != "%" and list[0][0] not in "1234567890": #gets rid of "noise" entries - garbled lines

noblanks = removeblanks(list)

register(lookup, noblanks[1], noblanks[2])

return lookup

def removeblanks(list): #gets rid of blank entries when each line is converted into a list

newlist = []

for x in list:

if x != "":

newlist.append(x)

return newlist

def register(table, key, value): #registers the German word in the hashtable as a key, with a list of pairs as values - first element of pair is part of speech tag, second is a numerical value indicating how frequently it appeared

if key in table:

invalues = False

sets = table[key]

for x in sets:

if x[0] == value:

x[1] = x[1] + 1

invalues = True

if invalues == False:

table[key].append([value,1])

else:

table[key] = [[value,1]]

def morphotest(readin):

hashtable = findmorph(readin)

14

matches = 0

x = 0

for y in readin:

list = y.split(’\t’)

if list[0][0] in "abcdefghijklmnoqprstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ":

noblanks = removeblanks(list)

if noblanks[3] == findmaxprob(hashtable[noblanks[0]]):

print "Match", noblanks[3], findmaxprob(hashtable[noblanks[0]]), noblanks[0]

matches = matches + 1

print matches

x= x+1

print "Total matches: ",

print matches

print "Total words: ",

print x

print "Accuracy: ",

print matches * 100.0 / x*1.0,

print "%"

def test(readin):

hashtable = findpos(readin)

matches = 0

x = 0

for y in readin:

list = y.split(’\t’)

if list[0][0] in "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ":

noblanks = removeblanks(list)

printlikely[1:len(mostlikely)]

noblanks[0:3]

print findmaxprob(hashtable[noblanks[1]]),noblanks[2],noblanks[1]

if noblanks[2] == findmaxprob(hashtable[noblanks[1]]):

print "Match", noblanks[2], findmaxprob(hashtable[noblanks[1]]),noblanks[1]

matches = matches + 1

print matches

x = x+1

if x == 1000:

15

break

print "Total matches: ",

print matches

print "Total words: ",

print x

print "Accuracy:",

print matches * 100.0 /x*1.0,

print "%"

main()

Appendix 2: Statistical Testing Results

Test size Part of speech Morpho. Analysis
100 90.0% 78.0%
1000 87.4% 77.0%
Full 88.0% 73.7%

16

