
Applications of Stochastic Processes in

Asset Price Modeling

TJHSST Computer Systems Lab Senior Research Project
2008-2009

Preetam D’Souza

February 26, 2009

Abstract

Stock market forecasting and asset price modeling have recently
become important areas in the financial world today. The increasing
complexity of the stock market and the lucrative field of investment
management has fueled breakthrough developments in mathematical
stock price modeling. New financial instruments that rely on an under-
lying asset’s price in the future to determine their current price require
accurate methods of stock modeling. One method of mathematical
modeling uses random or pseudorandom methods known as stochastic
processes to determine an asset’s price in the future. This project aims
to demonstrate the flexibility and accuracy of these stochastic models
by implementing them in code and testing them against empirical data.

Keywords: Stochastic processes, Brownian Motion, Financial Deriva-
tives, Asset Price Modeling

1

Contents

1 Introduction 3
1.1 Scope of Study . 3
1.2 Expected results . 3
1.3 Rationale . 3

2 Theory 4

3 Procedures and Methodology 4
3.1 Structure . 4
3.2 Model Accuracy . 5

4 Current Results 5

A Source code 7
A.1 Main model class . 7
A.2 Geometric Brownian class . 8
A.3 Statistics class . 9

2

1 Introduction

1 Introduction

1.1 Scope of Study

This project examines stochastic pro-
cesses to predict stock price move-
ments. Given the current price,
volatility, and expected return of
an arbitrary stock, several stochas-
tic models exist to predict changes
in price. The main model that will
be implemented and tested is Geo-
metric Brownian Motion, an adapta-
tion of the standard Brownian Mo-
tion process. A standard Brown-
ian Motion model assumes that stock
prices themselves follow a random
walk process. Geometric Brownian
Motion, on the other hand, assumes
that stock price returns, not specif-
ically the price, follow a stochastic
process. The goal of this project is to
extensively test both of these mod-
els against empirical data for a sin-
gle stock (IBM) to determine accu-
racy. Additionally, this project seeks
to develop possible variance reduc-
tion techniques that improve the va-
lidity of both models.

In order to test the models
against empirical data, historical
prices for a specific stock (such as
IBM) in the past over an arbitrary
time period are required. Yahoo! Fi-
nance has free stock price data in the
past for many large companies and
data from this website will be used
for this experiment.

1.2 Expected results

I expect that the stochastic modeling
techniques will approximate a stock’s
change in price after running many
simulated trials and fine-tuning the
model. Over several runs, the model
should converge to the actual stock
price fluctuations. The results of
the project can be shown visually
through graphs. For example, his-
torical IBM stock prices can be plot-
ted along with the simulated run of
the stock to show the accuracy of the
model.

If this project is successful, it
could be of use to financial compa-
nies that use investment models to
determine how to hedge their port-
folios against risk. Improved meth-
ods of variance reduction to improve
accuracy of these models also hold
value for derivative pricing. Results
from this project could also be used
to further develop the implemented
algorithms to more accurately model
stock prices.

In general, data garnered in this
experiment will presumably reveal
whether stochastic based models are
accurate in predicting complex stock
price movements. Calibration testing
will also potentially reveal possible
improvements to the current models.

1.3 Rationale

Implementation of these stochastic
models and extensive testing will
lead to results that help to determine

3

3 Procedures and Methodology

the accuracy and validity of these
models when they are used to pre-
dict stock prices. Several financial
firms tend to use these models to
price their complex financial instru-
ments and thus require a high degree
of certainty that their models are
correct to prevent risk and potential
losses. Invalid models used to price
these instruments can lead to poten-
tial mishaps for the entire economy;
this can easily be seen in the hous-
ing market collapse and subsequent
chaos on Wall Street where firms did
not know the correct value of their
mortgage-backed securities. Elimi-
nating these models and developing
improvements to them can lead to
greater fundamental knowledge be-
hind human behavior and more ac-
curate asset pricing methods.

2 Theory

Stochastic processes are can be rep-
resented with stochastic differen-
tial equations (SDEs) that describe
changes in different quantities.

Let S be the stock price, µ the
drift rate (or mean), σ the volatility
(or variance) of the stock, and let dZ
represent a Wiener Process.

dZ = φ
√

dt

where φ is drawn from a normal dis-
tribution N ∼ (0, 1). The SDE for
Geometric Brownian Motion is given
by:

dS

S
= µdt + σdZ

Here
dS

S
represents the return on the

stock. Multiplying by S to both sides
of the equation one obtains:

dS = µSdt + σSdZ

This shows that the stock price can-
not change once S = 0, which is a
requirement for this model to accu-
rately represent stock prices.

3 Procedures and
Methodology

3.1 Structure

After research of the theory behind
these models, the actual models were
implemented in code. Java was cho-
sen as the prime programming lan-
guage for all phases of this project.
First, an RSS based class was cre-
ated to retrieve real-time stock price
data for an given stock from a free fi-
nancial website. This will be used in
later development to predict present
movements of a stock price. A main
statistics class was also created to act
as a simple resource for calculating
the mean, variance, and standard de-
viation for a list of a stock’s historical
prices over an arbitrary time period.

The main model class is responsi-
ble for data parsing and simulation.
This class reads in historical price
data and utilizes the aforementioned
statistical convenience class to calcu-
late inputs to the model. Once these
are determined, the simulation pro-
cess begins. Currently, a Geomet-

4

4 Current Results

ric Brownian Motion model is be-
ing used, but this class can easily
be adopted to other models as long
as they follow the same convention.
These stochastic models were imple-
mented using a discrete iterative al-
gorithm to approximate the contin-
uous time forms of the theoretical
models. During the simulation, price
changes over the given trading pe-
riod (usually 1 day) are printed out
to a file formatted to easily be plotted
with Gnuplot. This model supports
simultaneous simulations so that sev-
eral different sample paths for a stock
price can be plotted on the same
graph.

Stock prices over one year can
be intuitively plotted on graphs to
display the price fluctuations with a
smooth curve drawn through the dis-
crete points. Charts of key prices
over a year can also be provided to
demonstrate potential variations in
the model from the empirical data.

3.2 Model Accuracy

The accuracy of the model with re-
spect to empirical data can be esti-
mated by calculating the Root Mean
Squared Deviation (RMSD) of the
data sets. This is a measure of the
average of the squared errors between
the model and the empirical data.
Let Si represent the empirical price
and Ŝi represent the simulated price.

The RMSD is then defined as:

RMSD =

√√√√ 1
n

n∑
i=1

(Ŝi − Si)2

A large value indicates large devia-
tions between the empirical data and
the model, while a value close to zero
represents a good fit.

4 Current Results

My model calculates simulated price
changes for a stock and outputs them
to a file that can be easily plot-
ted along with the empirical price
graph. Figures 1 and 2 on the next
page demonstrate two different simu-
lation runs of the Geometric Brown-
ian model. Each run is plotted with
the empirical price curve and three
simulation paths. In Figure 1, no-
tice how one simulation path runs
far off the drift line while the other
two move with the empirical data.
In Figure 2, all three simulations
hug the drift line and closely approx-
imate the historical price changes.
Different sample runs of this model
can produce dramatically different
results, although they can all be con-
sidered valid paths for a stock price
to take. The next step for analy-
sis will involve calculating the RMSD
between the historical and simulated
price sets.

5

4 Current Results

Figure 1: Simulated Price Run 1

Figure 2: Simulated Price Run 2

6

A Source code

A Source code

A.1 Main model class

// Preetam D’ Souza
// 2 . 1 7 . 0 9

/∗ Inpu t : H i s t o r i c a l s t o c k p r i c e s in . c s v format
∗ Process : Parse h i s t o r i c a l p r i c e data and o b t a i n u s e f u l s t a t i s t i c s such as
∗ mean and va r i ance o f s t o c k p r i c e s . S im l u l a t e t h e p r i c e s u s ing
∗ t h e d i s r e t e t ime form o f t h e Geometric Brownian p ro c e s s .
∗ Output : S imu la ted s t o c k p r i c e s over t h e s e t t ime frame .
∗ Format : <Time Step> <emp i r i c a l > <sim 1> <sim 2> . . . <sim n> <avg> <mean>
∗/

import java . u t i l . ∗ ;
import java . i o . ∗ ;

public class Model1
{

stat ic f ina l int NUM = 3; // number o f s imu l a t i o n s

public stat ic void main (St r ing [] a rgs) throws Exception
{

double d r i f t ;
double v o l a t i l i t y ;
double dt ; // t ime s t e p
double cur p ; // i n i t i a l p r i c e

// Inpu t Pars ing
St r ing [] months = {”Jan” , ”Feb” , ”Mar” , ”Apr” , ”May” , ”Jun” , ” Jul ” , ”Aug” , ”Sep” , ”Oct” , ”Nov” , ”Dec” } ;
ArrayList<Double> p r i c e s = new ArrayList<Double >() ;

System . out . p r in t (”\nParsing H i s t o r i c a l Pr i c e s . . . ”) ;
Pr intWriter pout = new PrintWriter (new Buf feredWriter (new Fi l eWr i t e r (”IBM. txt ”))) ;
Pr intWriter sout = new PrintWriter (new Buf feredWriter (new Fi l eWr i t e r (” s imulat ion avg . txt ”))) ;
Scanner sc = new Scanner (new F i l e (”IBM2 . csv ”)) ;
sc . nextLine () ;
pout . p r i n t f (”#Date\ t \tOpen \ tHigh \tLow \ tClose \n”) ;
while (sc . hasNext ()) {

St r ing [] s = sc . nextLine () . s p l i t (”\\ , ”) ;
pout . p r i n t f (”%s−%s−%s \ t%s \ t%s \ t%s \ t%s\n” , s [0] . sub s t r i ng (8 , 10) ,

months [In t eg e r . pa r s e In t (s [0] . sub s t r i ng (5 ,7)) −1] ,
s [0] . sub s t r i ng (2 , 4) , s [1] , s [2] , s [3] , s [4]) ;

p r i c e s . add (Double . parseDouble (s [1])) ;
}
System . out . p r i n t l n (”Done !\n”) ;

// S t a t i s t i c s c a l c u l a t i o n s o f d r i f t r a t e and v o l a t i l i t y
System . out . p r in t (” Ca l cu la t ing input data s t a t i s t i c s . . . ”) ;
double [] p = new double [p r i c e s . s i z e ()] ; // p r i c e s (r e c en t to l a t e s t order)
double [] r norm = new double [p r i c e s . s i z e () −1] ; // normal r e t u rn s
double [] r l o g = new double [p r i c e s . s i z e () −1] ; // l o g r e t u rn s
for (int i =0; i<p . l ength ; i++) p [i] = p r i c e s . get (i) ;
for (int i =0; i<r l o g . l ength ; i++) {

r norm [i] = (p [i] / p [i +1])−1.0;
r l o g [i] = Math . l og (p [i] / p [i +1]) ;

}

dt = (1 . 0/ p . l ength) ; // each t ime s t e p i s one day
Stat s = new Stat () ;
d r i f t = s . mean(r norm) ;
v o l a t i l i t y = s . sdev (r l o g)∗Math . sq r t (p . l ength) ; // annua l i z e d v o l a t i l i t y
cur p = p [p . length −1] ;
System . out . p r i n t f (”Done !\ nDr i f t : %f \ tAnnual ized Vo l a t i l i t y : %f \n\n” , d r i f t , v o l a t i l i t y) ;

// S imu la t i on
double dS ;
double mean l ine = cur p ;
double avg = 0 ;

System . out . p r in t (”Running Simulat ion . . . ”) ;

7

A Source code

sout . p r i n t f (”0 %.5 f ” , p [p . length −1]) ;
GeoBrownian [] g = new GeoBrownian [NUM] ;
for (int i =0; i<g . l ength ; i++) {

g [i] = new GeoBrownian (cur p , d r i f t , v o l a t i l i t y) ;
avg += g [i] . g e tPr i c e () ;
sout . p r i n t f (”%.5 f ” , g [i] . g e tPr i c e ()) ;

}
sout . p r i n t f (”%.5 f %.5 f \n” , avg /((double)NUM) , mean l ine) ;

mean l ine += (mean l ine∗ d r i f t) ;
for (int t=1; t <254; t++){

avg = 0 ;
sout . p r i n t f (”%d %.5 f ” , t , p [p . length−t −1]) ;
for (int i =0; i<g . l ength ; i++) {

g [i] . p roce s s (dt) ;
avg += g [i] . g e tPr i c e () ;
sout . p r i n t f (”%.5 f ” , g [i] . g e tPr i c e ()) ;

}
sout . p r i n t f (”%.5 f %.5 f \n” , avg /((double)NUM) , mean l ine) ;
mean l ine += (mean l ine∗ d r i f t) ;

}
System . out . p r i n t l n (”Done !\n”) ;

sout . p r i n t f (”#Mean : %f \n#Vo l a t i l i t y : %f \n” , d r i f t , v o l a t i l i t y) ;
sc . c l o s e () ;
pout . c l o s e () ;
sout . c l o s e () ;

}
}

A.2 Geometric Brownian class

// Preetam D’ Souza

/∗
∗ This c l a s s s imu l a t e d d i s c r e t e changes in s t o c k p r i c e
∗ us ing a geome t r i c brownian p ro c e s s .
∗/

import java . u t i l . ∗ ;

public class GeoBrownian
{

private double c u r p r i c e ;
private double mu;
private double sigma ;

public GeoBrownian (double pr i ce , double d r i f t , double v o l a t i l i t y)
{

c u r p r i c e = pr i c e ;
mu = d r i f t ;
sigma = v o l a t i l i t y ;

}

public double ge tPr i c e ()
{ return c u r p r i c e ; }

public void s e tP r i c e (double p r i c e)
{ c u r p r i c e = pr i c e ; }

public double g e tDr i f t ()
{ return mu; }

public void s e tD r i f t (double d r i f t)
{ mu = d r i f t ; }

public double g e tVo l a t i l i t y ()
{ return sigma ; }

public void s e tV o l a t i l i t y (double v o l a t i l i t y)
{ sigma = v o l a t i l i t y ; }

// p r i c e − cu r r en t s t o c k p r i c e

8

A Source code

// mu − d r i f t parameter
// sigma − s t o c k v o l a t i l i t y
// d t − t ime s t e p (u s u a l l y 1/ t r a d i n g p e r i o d s)

public double proce s s (double dt)
{

double phi ;
double dS , dZ ;

Random r = new Random () ;
phi = r . nextGaussian () ;
dZ = phi∗Math . sq r t (dt) ;
dS = cu r p r i c e ∗(mu∗dt + sigma∗dZ) ;
c u r p r i c e += dS ;
return dS ;

}
}

A.3 Statistics class

// Preetam D’ Souza
// ∗Based on Ph i l i p Barker ’ s DataDisper ion package∗

/∗ Convenience c l a s s to implement s t a t i s t i c s
∗ a l g o r i t hms f o r c a l c u l a t i n g t h e mean , va r i anc e
∗ and s tandard d e v i a t i o n f o r a data s e t .
∗/

// S t a t . j a va

import java . u t i l . ∗ ;

public class Stat
{

public Stat () {}

public stat ic double mean(double [] x)
{

double t o t a l =0.0;
for (int i =0; i<x . l ength ; i++)

t o t a l += x [i] ;
return t o t a l /x . l ength ;

}

public stat ic double var iance (double v1 [])
{

double sumd=0.0;
double t o t a l =0.0;
for (int i =0; i<v1 . l ength ; i++) {

t o t a l += v1 [i] ;
sumd += Math . pow(v1 [i] , 2) ;

}
return (sumd−(t o t a l ∗(t o t a l /v1 . l ength))) / ((v1 . l ength)−1);

}

public stat ic double sdev (double v1 [])
{

return Math . sq r t (var iance (v1)) ;
}

}

9

References

References

[1] Barker, Philip. Java Methods for Financial Engineering, Springer Pub-
lishing, May 2007

[2] Charnes, John. ”Using Simulation for Option Pricing” School of Busi-
ness, The University of Kansas.

[3] Chance, Don. ”Essays in Derivatives”, Wiley Publishing, August 1998

[4] Forsyth, Peter. ”An Introduction to Computational Finance without
Agonizing Pain”, School of Computer Science, University of Waterloo.

[5] Straja, Sorin. ”Stochastic Modeling of Stock Prices”, Montgomery In-
vestment Technology, Inc.

10

