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Abstract

Stock market forecasting and asset price modeling have recently become im-
portant areas in the financial world today. The increasing complexity of the stock
market and the lucrative field of investment management has fueled breakthrough
developments in mathematical stock price modeling. New financial instruments
that rely on an underlying asset’s price in the future to determine their current
price require accurate methods of stock modeling. One method of mathematical
modeling uses random or pseudorandom methods known as stochastic processes
to determine an asset’s price in the future. This project aims to demonstrate the
flexibility and accuracy of these stochastic models by implementing them in code
and testing them against empirical data. The main model tested in this project
will be the Geometric Brownian Motion diffusion process and it will be analyzed
with a variety of stocks, both stable and volatile, to appreciate an understanding
of its strengths and weaknesses during differing market conditions.
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1 Introduction

1 Introduction

1.1 Scope of Study

This project examines stochastic processes to predict stock price movements. Given the
current price, volatility, and expected return of an arbitrary stock, several stochastic models
exist to predict changes in price. The main model that will be implemented and tested is
Geometric Brownian Motion (GBM), an adaptation of the standard Brownian Motion process.
A standard Brownian Motion model assumes that stock prices themselves follow a random
walk process. GBM, on the other hand, assumes that stock price returns, not specifically the
price, follow a stochastic process. The goal of this project is to extensively test both of these
models against empirical data for a single stock (IBM) to determine accuracy. Additionally,
this project seeks to develop possible variance reduction techniques that improve the validity
of both models.

In order to test the models against empirical data, historical prices for a specific stock
(such as IBM) in the past over an arbitrary time period are required. Yahoo! Finance has
free stock price data in the past for many large companies and data from this website will be
used for this experiment.

1.2 Expected results

I expect that the stochastic modeling techniques will approximate a stock’s change in price
after running many simulated trials and fine-tuning the model. Over several runs, the model
should converge to the actual stock price fluctuations. The results of the project can be shown
visually through graphs. For example, historical IBM stock prices can be plotted along with
the simulated run of the stock to show the accuracy of the model.

If this project is successful, it could be of use to financial companies that use investment
models to determine how to hedge their portfolios against risk. Improved methods of variance
reduction to improve accuracy of these models also hold value for derivative pricing. Results
from this project could also be used to further develop the implemented algorithms to more
accurately model stock prices.

In general, data garnered in this experiment will presumably reveal whether stochastic
based models are accurate in predicting complex stock price movements. Calibration testing
will also potentially reveal possible improvements to the current models.

1.3 Rationale

Implementation of these stochastic models and extensive testing will lead to results that
help to determine the accuracy and validity of these models when they are used to predict
stock prices. Several financial firms tend to use these models to price their complex financial
instruments and thus require a high degree of certainty that their models are correct to
prevent risk and potential losses. Invalid models used to price these instruments can lead
to potential mishaps for the entire economy; this can easily be seen in the housing market
collapse and subsequent chaos on Wall Street where firms did not know the correct value of
their mortgage-backed securities. Eliminating these models and developing improvements to
them can lead to greater fundamental knowledge behind human behavior and more accurate
asset pricing methods.
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3 Procedures and Methodology

2 Theory

Stochastic processes are can be represented with stochastic differential equations (SDEs) that
describe changes in different quantities.

Let S be the stock price, µ the drift rate (or mean), σ the volatility (or variance) of the
stock, and let dZ represent a Wiener Process.

dZ = φ
√

dt

where φ is drawn from a normal distribution N ∼ (0, 1). The SDE for Geometric Brownian
Motion is given by:

dS

S
= µdt + σdZ

Here
dS

S
represents the return on the stock. Multiplying by S to both sides of the equation

one obtains:
dS = µSdt + σSdZ

This shows that the stock price cannot change once S = 0, which is a requirement for this
model to accurately represent stock prices.

3 Procedures and Methodology

3.1 Structure

After research of the theory behind these models, the actual models were implemented in code.
Java was chosen as the prime programming language for all phases of this project. First, an
RSS based class was created to retrieve real-time stock price data for an given stock from a
free financial website. This will be used in later development to predict present movements
of a stock price. A main statistics class was also created to act as a simple resource for
calculating the mean, variance, and standard deviation for a list of a stock’s historical prices
over an arbitrary time period.

The main model class is responsible for data parsing and simulation. This class reads in
historical price data and utilizes the aforementioned statistical convenience class to calculate
inputs to the model. Once these are determined, the simulation process begins. Currently,
a Geometric Brownian Motion model is being used, but this class can easily be adopted
to other models as long as they follow the same convention. These stochastic models were
implemented using a discrete iterative algorithm to approximate the continuous time forms
of the theoretical models. During the simulation, price changes over the given trading period
(usually 1 day) are printed out to a file formatted to easily be plotted with Gnuplot. This
model supports simultaneous simulations so that several different sample paths for a stock
price can be plotted on the same graph.

Stock prices over one year can be intuitively plotted on graphs to display the price fluc-
tuations with a smooth curve drawn through the discrete points. Charts of key prices over a
year can also be provided to demonstrate potential variations in the model from the empirical
data.
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4 Current Results

3.2 Model Inputs

There are two main inputs to the Geometric Brownian Motion model that are obtained from
empirical data in the past. The first is µ, the drift (mean) of the stock price’s returns over
the chosen period for analysis. This attribute is useful in determining the overall general drift
rate of the stock and hence signals the direction towards which a stock tends to move over
a long period of time. This is obtained by calculating the mean of the stock price’s returns.
Let Si represent the ith stock price, then:

µ =
1
n

n∑
i=1

Si

The other input is the volatility, or standard deviation, of the empirical data from the past.
Let σ represent the volatility, then a reasonable algorithm for calculating the volatility is1:

σ =

√√√√√ 1
n− 1

 n∑
i=1

S2
i −

1
n

(
n∑

i=1

Si

)2


3.3 Model Accuracy

The accuracy of the model with respect to empirical data can be estimated by calculating the
Root Mean Squared Deviation (RMSD) of the data sets. This is a measure of the average of
the squared errors between the model and the empirical data. Let Si represent the empirical
price and Ŝi represent the simulated price. The RMSD is then defined as:

RMSD =

√√√√ 1
n

n∑
i=1

(Ŝi − Si)2

A large value indicates large deviations between the empirical data and the model, while a
value close to zero represents a good fit.

4 Current Results

The current model calculates simulated price changes for a stock and outputs them to a file
that can be easily plotted along with the empirical price graph. Figures 1 and 2 on the
next page demonstrate two different simulation runs of the Geometric Brownian model. The
empirical data used for these runs are the IBM opening prices from January 1990 to January
1991. IBM was chosen to be an initial stock used for analysis due to its status as a blue-
chip stock and hence its general stability over several years. Each run is plotted with the
empirical price curve and three simulation paths. In Figure 1, notice how one simulation
path runs far off the drift line while the other two move with the empirical data. In Figure 2,
all three simulations hug the drift line and closely approximate the historical price changes.
Different sample runs of this model can produce dramatically different results, although they
can all be considered valid paths for a stock price to take. Note that these figures are only

1This algorithm is justified by the following relationship in probability theory: V ar(X) = E(X2)−E(X)2,
where V ar(X) is the variance of a random variable X and E(X) is the expected value of X.
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5 Conclusions

demonstrating how accurately the Geometric Brownian process can fit empirical data in the
past.

Figures 3 and 4 on the next page demonstrate the accuracy of the Geometric Brownian
model for the time period January 1991 to January 1992 for IBM stock. 1991-1992 was an
overall bear session for IBM stock as its value steadily declined from $113 to $89. In Figure
3, it can easily be observed how the GBM model overestimates IBM growth for this period
due to the fact that the drift rate is positive. Each simulation tends to be centered around
the mean line, and thus the averaged simulation predicts a price that is a full $30 above the
actual closing price. However, sometimes the GBM model can produce accurate results even
in a down market, which can be seen in Figure 4. Seemingly against all odds, each run in
this simulation runs below the drift line and yields an averaged ending price that is within
$10 from the empirical closing price.

The following graphs display just how variable each simulation can be; sometimes the
model can produce accurate results but many other times it can either overestimate or under-
estimate a stock’s potential for growth. A large part of the model is based on past data, so the
importance of the choice of data for calculating the model inputs should not be neglected. See
Appendix A for sample simulation runs on Google, Wal-mart, and Honda Motor Company
shares.

5 Conclusions

From the numerous trials of the Geometric Brownian Motion model under varying market
conditions, it appears that it is capable of accurately representing stock price movements. The
stochastic differential equations that govern the GBM model seem to be a fairly reasonable
mathematical model for anticipating price changes based on historical price data. However,
it is prudent to keep in mind that there is no certain consistency to the model’s predictions.
The inherent randomness associated with the general Weiner process that governs GBM
gives rise to an unpredictable and occasionally highly volatile model. One way of dealing
with volatility issues is to run several simulations and average them all together to obtain
an averaged simulation run. Unfortunately, extensive averaging smooths out the stochastic
nature of the model and destroys its defining characteristic of seemingly random motion. In
this case, the model approaches the linear drift line of the given stock. In this project, three
simulations were averaged together in order to mitigate volatility while preserving the model’s
stochastic nature.

Given the strengths and weaknesses of the GBM model, it is insufficient to wholly concen-
trate on this individual model when determining investment decisions in the equity markets.
Human judgmenet and other traditional forms of investment research should be used in con-
junction with the GBM model in order to offset potential errors in the model’s predictions.
The GBM model may be especially useful in determining complex derivative prices that can-
not be priced with the standard Black-Scholes formula. When used carefully, the GBM model
can be a powerful tool in influencing investment decisions.
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5 Conclusions

Figure 1: Simulation 1 for IBM stock during January 1990-1991

Figure 2: Simulation 2 for IBM stock during January 1990-1991
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5 Conclusions

Figure 3: Simulation 3 for IBM stock during January 1991-1992

Figure 4: Simulation 4 for IBM stock during January 1991-1992
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A Additional Simulation Runs

A Additional Simulation Runs

A.1 Google

Figure 5: Simulation 1 for Google stock during April 2008-2009

Figure 6: Simulation 2 for Google stock during April 2008-2009
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A Additional Simulation Runs

A.2 Wal-Mart

Figure 7: Simulation 1 for Wal-Mart stock during April 2008-2009

Figure 8: Simulation 2 for Wal-Mart stock during April 2008-2009
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A Additional Simulation Runs

A.3 Honda Motor Company

Figure 9: Simulation 1 for Honda stock during April 2008-2009

Figure 10: Simulation 2 for Honda stock during April 2008-2009
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B Source code

B Source code

B.1 Main model class

// Preetam D’ Souza
// 2 . 1 7 . 0 9

/∗ Inpu t : H i s t o r i c a l s t o c k p r i c e s in . c s v format
∗ Process : Parse h i s t o r i c a l p r i c e data and o b t a i n u s e f u l s t a t i s t i c s such as
∗ mean and va r i ance o f s t o c k p r i c e s . S im l u l a t e t h e p r i c e s u s ing
∗ t h e d i s r e t e t ime form o f t h e Geometric Brownian p ro c e s s .
∗ Output : S imu la ted s t o c k p r i c e s over t h e s e t t ime frame .
∗ Format : <Time Step> <emp i r i c a l > <sim 1> <sim 2> . . . <sim n> <avg> <mean>
∗/

import java . u t i l . ∗ ;
import java . i o . ∗ ;

public class Model1
{

stat ic f ina l int NUM = 3; // number o f s imu l a t i o n s

public stat ic void main ( St r ing [ ] a rgs ) throws Exception
{

double d r i f t ;
double v o l a t i l i t y ;
double dt ; // t ime s t e p
double cur p ; // i n i t i a l p r i c e

// Inpu t Pars ing
St r ing [ ] months = {”Jan” , ”Feb” , ”Mar” , ”Apr” , ”May” , ”Jun” , ” Jul ” , ”Aug” , ”Sep” , ”Oct” , ”Nov” , ”Dec” } ;
ArrayList<Double> p r i c e s = new ArrayList<Double >() ;

System . out . p r in t ( ”\nParsing H i s t o r i c a l Pr i c e s . . . ” ) ;
Pr intWriter pout = new PrintWriter (new Buf feredWriter (new Fi l eWr i t e r ( ”HMC. txt ” ) ) ) ;
Pr intWriter sout = new PrintWriter (new Buf feredWriter (new Fi l eWr i t e r ( ” s imulat ion avg . txt ” ) ) ) ;
Scanner sc = new Scanner (new F i l e ( ”HMC−07−08. csv ” ) ) ;
sc . nextLine ( ) ;
pout . p r i n t f ( ”#Date\ t \tOpen \ tHigh \tLow \ tClose \n” ) ;
while ( sc . hasNext ( ) ) {

St r ing [ ] s = sc . nextLine ( ) . s p l i t ( ”\\ , ” ) ;
pout . p r i n t f ( ”%s−%s−%s \ t%s \ t%s \ t%s \ t%s\n” , s [ 0 ] . sub s t r i ng (8 , 10 ) ,

months [ In t eg e r . pa r s e In t ( s [ 0 ] . sub s t r i ng (5 ,7)) −1 ] ,
s [ 0 ] . sub s t r i ng (2 , 4 ) , s [ 1 ] , s [ 2 ] , s [ 3 ] , s [ 4 ] ) ;

p r i c e s . add ( Double . parseDouble ( s [ 1 ] ) ) ;
}
System . out . p r i n t l n ( ”Done !\n” ) ;

// S t a t i s t i c s c a l c u l a t i o n s o f d r i f t r a t e and v o l a t i l i t y
System . out . p r in t ( ” Ca l cu la t ing input data s t a t i s t i c s . . . ” ) ;
double [ ] p = new double [ p r i c e s . s i z e ( ) ] ; // p r i c e s ( r e c en t to l a t e s t order )
double [ ] r norm = new double [ p r i c e s . s i z e () −1 ] ; // normal r e t u rn s
double [ ] r l o g = new double [ p r i c e s . s i z e () −1 ] ; // l o g r e t u rn s
for ( int i =0; i<p . l ength ; i++) p [ i ] = p r i c e s . get ( i ) ;
for ( int i =0; i<r l o g . l ength ; i++) {

r norm [ i ] = (p [ i ] / p [ i +1])−1.0;
r l o g [ i ] = Math . l og (p [ i ] / p [ i +1 ] ) ;

}

dt = (1 . 0/ p . l ength ) ; // each t ime s t e p i s one day
Stat s = new Stat ( ) ;
d r i f t = s . mean( r norm ) ;
v o l a t i l i t y = s . sdev ( r l o g )∗Math . sq r t (p . l ength ) ; // annua l i z e d v o l a t i l i t y
cur p = p [ 0 ] ; // f o r nex t year ’ s mode l ing
System . out . p r i n t f ( ”Done !\ nDr i f t : %f \ tAnnual ized Vo l a t i l i t y : %f \n\n” , d r i f t , v o l a t i l i t y ) ;

// S imu la t i on
double dS ;
double mean l ine = cur p ;
double avg = 0 ;

System . out . p r in t ( ”Running Simulat ion . . . ” ) ;

sout . p r i n t f ( ”0 %.5 f ” , p [ p . length −1 ] ) ;
GeoBrownian [ ] g = new GeoBrownian [NUM] ;
for ( int i =0; i<g . l ength ; i++) {

g [ i ] = new GeoBrownian ( cur p , d r i f t , v o l a t i l i t y ) ;
avg += g [ i ] . g e tPr i c e ( ) ;
sout . p r i n t f ( ”%.5 f ” , g [ i ] . g e tPr i c e ( ) ) ;

}
sout . p r i n t f ( ”%.5 f %.5 f \n” , avg /( (double )NUM) , mean l ine ) ;

mean l ine += ( mean l ine∗ d r i f t ) ;
for ( int t=1; t<p . l ength ; t++){

avg = 0 ;
sout . p r i n t f ( ”%d %.5 f ” , t , p [ p . length−t −1 ] ) ;
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B Source code

for ( int i =0; i<g . l ength ; i++) {
g [ i ] . p roce s s ( dt ) ;
avg += g [ i ] . g e tPr i c e ( ) ;
sout . p r i n t f ( ”%.5 f ” , g [ i ] . g e tPr i c e ( ) ) ;

}
sout . p r i n t f ( ”%.5 f %.5 f \n” , avg /( (double )NUM) , mean l ine ) ;
mean l ine += ( mean l ine∗ d r i f t ) ;

}
System . out . p r i n t l n ( ”Done !\n” ) ;

sout . p r i n t f ( ”#Mean : %f \n#Vo l a t i l i t y : %f \n” , d r i f t , v o l a t i l i t y ) ;
sc . c l o s e ( ) ;
pout . c l o s e ( ) ;
sout . c l o s e ( ) ;

}
}

B.2 Geometric Brownian class

// Preetam D’ Souza

/∗
∗ This c l a s s s imu l a t e d d i s c r e t e changes in s t o c k p r i c e
∗ us ing a geome t r i c brownian p ro c e s s .
∗/

import java . u t i l . ∗ ;

public class GeoBrownian
{

private double c u r p r i c e ;
private double mu;
private double sigma ;

public GeoBrownian (double pr i ce , double d r i f t , double v o l a t i l i t y )
{

c u r p r i c e = pr i c e ;
mu = d r i f t ;
sigma = v o l a t i l i t y ;

}

public double ge tPr i c e ( )
{ return c u r p r i c e ; }

public void s e tP r i c e (double p r i c e )
{ c u r p r i c e = pr i c e ; }

public double g e tDr i f t ( )
{ return mu; }

public void s e tD r i f t (double d r i f t )
{ mu = d r i f t ; }

public double g e tVo l a t i l i t y ( )
{ return sigma ; }

public void s e tV o l a t i l i t y (double v o l a t i l i t y )
{ sigma = v o l a t i l i t y ; }

// p r i c e − cu r r en t s t o c k p r i c e
// mu − d r i f t parameter
// sigma − s t o c k v o l a t i l i t y
// d t − t ime s t e p ( u s u a l l y 1/ t r a d i n g p e r i o d s )

public double proce s s (double dt )
{

double phi ;
double dS , dZ ;

Random r = new Random ( ) ;
phi = r . nextGaussian ( ) ;
dZ = phi∗Math . sq r t ( dt ) ;
dS = cu r p r i c e ∗(mu∗dt + sigma∗dZ ) ;
c u r p r i c e += dS ;
return dS ;

}
}

B.3 Statistics class

// Preetam D’ Souza
// ∗Based on Ph i l i p Barker ’ s DataDisper ion package∗

/∗ Convenience c l a s s to implement s t a t i s t i c s
∗ a l g o r i t hms f o r c a l c u l a t i n g t h e mean , va r i anc e
∗ and s tandard d e v i a t i o n f o r a data s e t .
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∗/

// S t a t . j a va

import java . u t i l . ∗ ;

public class Stat
{

public Stat ( ) {}

public stat ic double mean(double [ ] x )
{

double t o t a l =0.0;
for ( int i =0; i<x . l ength ; i++)

t o t a l += x [ i ] ;
return t o t a l /x . l ength ;

}

public stat ic double var iance (double v1 [ ] )
{

double sumd=0.0;
double t o t a l =0.0;
for ( int i =0; i<v1 . l ength ; i++) {

t o t a l += v1 [ i ] ;
sumd += Math . pow( v1 [ i ] , 2 ) ;

}
return (sumd−( t o t a l ∗( t o t a l /v1 . l ength ) ) ) / ( ( v1 . l ength )−1);

}

public stat ic double sdev (double v1 [ ] )
{

return Math . sq r t ( var iance ( v1 ) ) ;
}

}
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