
Applications of Stochastic Processes
in Asset Price Modeling

TJHSST Computer Systems Lab Senior Research Project
2008-2009

Preetam D’Souza

April 2, 2009

Abstract

Stock market forecasting and asset price modeling have recently
become important areas in the financial world today. The increasing
complexity of the stock market and the lucrative field of investment
management has fueled breakthrough developments in mathematical
stock price modeling. New financial instruments that rely on an under-
lying asset’s price in the future to determine their current price require
accurate methods of stock modeling. One method of mathematical
modeling uses random or pseudorandom methods known as stochas-
tic processes to determine an asset’s price in the future. This project
aims to demonstrate the flexibility and accuracy of these stochastic
models by implementing them in code and testing them against empir-
ical data. The main model tested in this project will be the Geometric
Brownian Motion diffusion process and it will be analyzed with a vari-
ety of stocks, both stable and volatile, to appreciate an understanding
of its strengths and weaknesses during differing market conditions.

Keywords: Stochastic processes, Brownian Motion, Financial
Derivatives, Asset Price Modeling

1

Contents

1 Introduction 3
1.1 Scope of Study . 3
1.2 Expected results . 3
1.3 Rationale . 4

2 Theory 4

3 Procedures and Methodology 5
3.1 Structure . 5
3.2 Model Inputs . 5
3.3 Model Accuracy . 6

4 Current Results 6

A Source code 10
A.1 Main model class . 10
A.2 Geometric Brownian class . 11
A.3 Statistics class . 12

2

1 Introduction

1 Introduction

1.1 Scope of Study

This project examines stochastic processes to predict stock price movements.
Given the current price, volatility, and expected return of an arbitrary stock,
several stochastic models exist to predict changes in price. The main model
that will be implemented and tested is Geometric Brownian Motion (GBM),
an adaptation of the standard Brownian Motion process. A standard Brow-
nian Motion model assumes that stock prices themselves follow a random
walk process. GBM, on the other hand, assumes that stock price returns,
not specifically the price, follow a stochastic process. The goal of this project
is to extensively test both of these models against empirical data for a sin-
gle stock (IBM) to determine accuracy. Additionally, this project seeks to
develop possible variance reduction techniques that improve the validity of
both models.

In order to test the models against empirical data, historical prices for a
specific stock (such as IBM) in the past over an arbitrary time period are
required. Yahoo! Finance has free stock price data in the past for many large
companies and data from this website will be used for this experiment.

1.2 Expected results

I expect that the stochastic modeling techniques will approximate a stock’s
change in price after running many simulated trials and fine-tuning the
model. Over several runs, the model should converge to the actual stock
price fluctuations. The results of the project can be shown visually through
graphs. For example, historical IBM stock prices can be plotted along with
the simulated run of the stock to show the accuracy of the model.

If this project is successful, it could be of use to financial companies that
use investment models to determine how to hedge their portfolios against risk.
Improved methods of variance reduction to improve accuracy of these models
also hold value for derivative pricing. Results from this project could also
be used to further develop the implemented algorithms to more accurately
model stock prices.

In general, data garnered in this experiment will presumably reveal whether
stochastic based models are accurate in predicting complex stock price move-
ments. Calibration testing will also potentially reveal possible improvements

3

2 Theory

to the current models.

1.3 Rationale

Implementation of these stochastic models and extensive testing will lead
to results that help to determine the accuracy and validity of these models
when they are used to predict stock prices. Several financial firms tend
to use these models to price their complex financial instruments and thus
require a high degree of certainty that their models are correct to prevent
risk and potential losses. Invalid models used to price these instruments can
lead to potential mishaps for the entire economy; this can easily be seen
in the housing market collapse and subsequent chaos on Wall Street where
firms did not know the correct value of their mortgage-backed securities.
Eliminating these models and developing improvements to them can lead to
greater fundamental knowledge behind human behavior and more accurate
asset pricing methods.

2 Theory

Stochastic processes are can be represented with stochastic differential equa-
tions (SDEs) that describe changes in different quantities.

Let S be the stock price, µ the drift rate (or mean), σ the volatility (or
variance) of the stock, and let dZ represent a Wiener Process.

dZ = φ
√

dt

where φ is drawn from a normal distribution N ∼ (0, 1). The SDE for
Geometric Brownian Motion is given by:

dS

S
= µdt + σdZ

Here
dS

S
represents the return on the stock. Multiplying by S to both sides

of the equation one obtains:

dS = µSdt + σSdZ

This shows that the stock price cannot change once S = 0, which is a re-
quirement for this model to accurately represent stock prices.

4

3 Procedures and Methodology

3 Procedures and Methodology

3.1 Structure

After research of the theory behind these models, the actual models were
implemented in code. Java was chosen as the prime programming language
for all phases of this project. First, an RSS based class was created to retrieve
real-time stock price data for an given stock from a free financial website.
This will be used in later development to predict present movements of a stock
price. A main statistics class was also created to act as a simple resource for
calculating the mean, variance, and standard deviation for a list of a stock’s
historical prices over an arbitrary time period.

The main model class is responsible for data parsing and simulation.
This class reads in historical price data and utilizes the aforementioned sta-
tistical convenience class to calculate inputs to the model. Once these are
determined, the simulation process begins. Currently, a Geometric Brow-
nian Motion model is being used, but this class can easily be adopted to
other models as long as they follow the same convention. These stochastic
models were implemented using a discrete iterative algorithm to approximate
the continuous time forms of the theoretical models. During the simulation,
price changes over the given trading period (usually 1 day) are printed out
to a file formatted to easily be plotted with Gnuplot. This model supports
simultaneous simulations so that several different sample paths for a stock
price can be plotted on the same graph.

Stock prices over one year can be intuitively plotted on graphs to display
the price fluctuations with a smooth curve drawn through the discrete points.
Charts of key prices over a year can also be provided to demonstrate potential
variations in the model from the empirical data.

3.2 Model Inputs

There are two main inputs to the Geometric Brownian Motion model that
are obtained from empirical data in the past. The first is µ, the drift (mean)
of the stock price’s returns over the chosen period for analysis. This attribute
is useful in determining the overall general drift rate of the stock and hence
signals the direction towards which a stock tends to move over a long period
of time. This is obtained by calculating the mean of the stock price’s returns.

5

4 Current Results

Let Si represent the ith stock price, then:

µ =
1

n

n∑
i=1

Si

The other input is the volatility, or standard deviation, of the empirical data
from the past. Let σ represent the volatility, then a reasonable algorithm for
calculating the volatility is1:

σ =

√√√√√ 1

n− 1

 n∑
i=1

S2
i −

1

n

(
n∑

i=1

Si

)2

3.3 Model Accuracy

The accuracy of the model with respect to empirical data can be estimated
by calculating the Root Mean Squared Deviation (RMSD) of the data sets.
This is a measure of the average of the squared errors between the model and
the empirical data. Let Si represent the empirical price and Ŝi represent the
simulated price. The RMSD is then defined as:

RMSD =

√√√√ 1

n

n∑
i=1

(Ŝi − Si)2

A large value indicates large deviations between the empirical data and the
model, while a value close to zero represents a good fit.

4 Current Results

The current model calculates simulated price changes for a stock and outputs
them to a file that can be easily plotted along with the empirical price graph.
Figures 1 and 2 on the next page demonstrate two different simulation runs
of the Geometric Brownian model. The empirical data used for these runs
are the IBM opening prices from January 1990 to January 1991. IBM was

1This algorithm is justified by the following relationship in probability theory:
V ar(X) = E(X2) − E(X)2, where V ar(X) is the variance of a random variable X and
E(X) is the expected value of X.

6

4 Current Results

chosen to be an initial stock used for analysis due to its status as a blue-chip
stock and hence its general stability over several years. Each run is plotted
with the empirical price curve and three simulation paths. In Figure 1, notice
how one simulation path runs far off the drift line while the other two move
with the empirical data. In Figure 2, all three simulations hug the drift line
and closely approximate the historical price changes. Different sample runs
of this model can produce dramatically different results, although they can
all be considered valid paths for a stock price to take. Note that these figures
are only demonstrating how accurately the Geometric Brownian process can
fit empirical data in the past.

Figures 3 and 4 on the next page demonstrate the accuracy of the Geo-
metric Brownian model for the time period January 1991 to January 1992 for
IBM stock. 1991-1992 was an overall bear session for IBM stock as its value
steadily declined from $113 to $89. In Figure 3, it can easily be observed how
the GBM model overestimates IBM growth for this period due to the fact
that the drift rate is positive. Each simulation tends to be centered around
the mean line, and thus the averaged simulation predicts a price that is a
full $30 above the actual closing price. However, sometimes the GBM model
can produce accurate results even in a down market, which can be seen in
Figure 4. Seemingly against all odds, each run in this simulation runs below
the drift line and yields an averaged ending price that is within $10 from the
empirical closing price.

The following graphs display just how variable each simulation can be;
sometimes the model can produce accurate results but many other times it
can either overestimate or underestimate a stock’s potential for growth. A
large part of the model is based on past data, so the importance of the choice
of data for calculating the model inputs should not be neglected.

7

4 Current Results

Figure 1: Simulated Price Run 1: IBM stock for January 1990-1991

Figure 2: Simulated Price Run 2: IBM stock for January 1990-1991

8

4 Current Results

Figure 3: Simulated Price Run 3: IBM stock for January 1991-1992

Figure 4: Simulated Price Run 4: IBM stock for January 1991-1992

9

A Source code

A Source code

A.1 Main model class

// Preetam D’ Souza
// 2 . 1 7 . 0 9

/∗ Inpu t : H i s t o r i c a l s t o c k p r i c e s in . c s v format
∗ Process : Parse h i s t o r i c a l p r i c e data and o b t a i n u s e f u l s t a t i s t i c s such as
∗ mean and va r i ance o f s t o c k p r i c e s . S im l u l a t e t h e p r i c e s u s ing
∗ t h e d i s r e t e t ime form o f t h e Geometric Brownian p ro c e s s .
∗ Output : S imu la ted s t o c k p r i c e s over t h e s e t t ime frame .
∗ Format : <Time Step> <emp i r i c a l > <sim 1> <sim 2> . . . <sim n> <avg> <mean>
∗/

import java . u t i l . ∗ ;
import java . i o . ∗ ;

public class Model1
{

stat ic f ina l int NUM = 3; // number o f s imu l a t i o n s

public stat ic void main (St r ing [] a rgs) throws Exception
{

double d r i f t ;
double v o l a t i l i t y ;
double dt ; // t ime s t e p
double cur p ; // i n i t i a l p r i c e

// Inpu t Pars ing
St r ing [] months = {”Jan” , ”Feb” , ”Mar” , ”Apr” , ”May” , ”Jun” , ” Jul ” , ”Aug” , ”Sep” , ”Oct” , ”Nov” , ”Dec” } ;
ArrayList<Double> p r i c e s = new ArrayList<Double >() ;

System . out . p r in t (”\nParsing H i s t o r i c a l Pr i c e s . . . ”) ;
Pr intWriter pout = new PrintWriter (new Buf feredWriter (new Fi l eWr i t e r (”IBM. txt ”))) ;
Pr intWriter sout = new PrintWriter (new Buf feredWriter (new Fi l eWr i t e r (” s imulat ion avg . txt ”))) ;
Scanner sc = new Scanner (new F i l e (”IBM−90−91. csv ”)) ;
sc . nextLine () ;
pout . p r i n t f (”#Date\ t \tOpen \ tHigh \tLow \ tClose \n”) ;
while (sc . hasNext ()) {

St r ing [] s = sc . nextLine () . s p l i t (”\\ , ”) ;
pout . p r i n t f (”%s−%s−%s \ t%s \ t%s \ t%s \ t%s\n” , s [0] . sub s t r i ng (8 , 10) ,

months [In t eg e r . pa r s e In t (s [0] . sub s t r i ng (5 ,7)) −1] ,
s [0] . sub s t r i ng (2 , 4) , s [1] , s [2] , s [3] , s [4]) ;

p r i c e s . add (Double . parseDouble (s [1])) ;
}
System . out . p r i n t l n (”Done !\n”) ;

// S t a t i s t i c s c a l c u l a t i o n s o f d r i f t r a t e and v o l a t i l i t y
System . out . p r in t (” Ca l cu la t ing input data s t a t i s t i c s . . . ”) ;
double [] p = new double [p r i c e s . s i z e ()] ; // p r i c e s (r e c en t to l a t e s t order)
double [] r norm = new double [p r i c e s . s i z e () −1] ; // normal r e t u rn s
double [] r l o g = new double [p r i c e s . s i z e () −1] ; // l o g r e t u rn s
for (int i =0; i<p . l ength ; i++) p [i] = p r i c e s . get (i) ;
for (int i =0; i<r l o g . l ength ; i++) {

r norm [i] = (p [i] / p [i +1])−1.0;
r l o g [i] = Math . l og (p [i] / p [i +1]) ;

}

dt = (1 . 0/ p . l ength) ; // each t ime s t e p i s one day
Stat s = new Stat () ;
d r i f t = s . mean(r norm) ;
v o l a t i l i t y = s . sdev (r l o g)∗Math . sq r t (p . l ength) ; // annua l i z e d v o l a t i l i t y
cur p = p [0] ; // f o r nex t year ’ s mode l ing
System . out . p r i n t f (”Done !\ nDr i f t : %f \ tAnnual ized Vo l a t i l i t y : %f \n\n” , d r i f t , v o l a t i l i t y) ;

// S imu la t i on
double dS ;
double mean l ine = cur p ;
double avg = 0 ;

System . out . p r in t (”Running Simulat ion . . . ”) ;

10

A Source code

sout . p r i n t f (”0 %.5 f ” , p [p . length −1]) ;
GeoBrownian [] g = new GeoBrownian [NUM] ;
for (int i =0; i<g . l ength ; i++) {

g [i] = new GeoBrownian (cur p , d r i f t , v o l a t i l i t y) ;
avg += g [i] . g e tPr i c e () ;
sout . p r i n t f (”%.5 f ” , g [i] . g e tPr i c e ()) ;

}
sout . p r i n t f (”%.5 f %.5 f \n” , avg /((double)NUM) , mean l ine) ;

mean l ine += (mean l ine∗ d r i f t) ;
for (int t=1; t <254; t++){

avg = 0 ;
sout . p r i n t f (”%d %.5 f ” , t , p [p . length−t −1]) ;
for (int i =0; i<g . l ength ; i++) {

g [i] . p roce s s (dt) ;
avg += g [i] . g e tPr i c e () ;
sout . p r i n t f (”%.5 f ” , g [i] . g e tPr i c e ()) ;

}
sout . p r i n t f (”%.5 f %.5 f \n” , avg /((double)NUM) , mean l ine) ;
mean l ine += (mean l ine∗ d r i f t) ;

}
System . out . p r i n t l n (”Done !\n”) ;

sout . p r i n t f (”#Mean : %f \n#Vo l a t i l i t y : %f \n” , d r i f t , v o l a t i l i t y) ;
sc . c l o s e () ;
pout . c l o s e () ;
sout . c l o s e () ;

}
}

A.2 Geometric Brownian class

// Preetam D’ Souza

/∗
∗ This c l a s s s imu l a t e d d i s c r e t e changes in s t o c k p r i c e
∗ us ing a geome t r i c brownian p ro c e s s .
∗/

import java . u t i l . ∗ ;

public class GeoBrownian
{

private double c u r p r i c e ;
private double mu;
private double sigma ;

public GeoBrownian (double pr i ce , double d r i f t , double v o l a t i l i t y)
{

c u r p r i c e = pr i c e ;
mu = d r i f t ;
sigma = v o l a t i l i t y ;

}

public double ge tPr i c e ()
{ return c u r p r i c e ; }

public void s e tP r i c e (double p r i c e)
{ c u r p r i c e = pr i c e ; }

public double g e tDr i f t ()
{ return mu; }

public void s e tD r i f t (double d r i f t)
{ mu = d r i f t ; }

public double g e tVo l a t i l i t y ()
{ return sigma ; }

public void s e tV o l a t i l i t y (double v o l a t i l i t y)
{ sigma = v o l a t i l i t y ; }

// p r i c e − cu r r en t s t o c k p r i c e

11

A Source code

// mu − d r i f t parameter
// sigma − s t o c k v o l a t i l i t y
// d t − t ime s t e p (u s u a l l y 1/ t r a d i n g p e r i o d s)

public double proce s s (double dt)
{

double phi ;
double dS , dZ ;

Random r = new Random () ;
phi = r . nextGaussian () ;
dZ = phi∗Math . sq r t (dt) ;
dS = cu r p r i c e ∗(mu∗dt + sigma∗dZ) ;
c u r p r i c e += dS ;
return dS ;

}
}

A.3 Statistics class

// Preetam D’ Souza
// ∗Based on Ph i l i p Barker ’ s DataDisper ion package∗

/∗ Convenience c l a s s to implement s t a t i s t i c s
∗ a l g o r i t hms f o r c a l c u l a t i n g t h e mean , va r i anc e
∗ and s tandard d e v i a t i o n f o r a data s e t .
∗/

// S t a t . j a va

import java . u t i l . ∗ ;

public class Stat
{

public Stat () {}

public stat ic double mean(double [] x)
{

double t o t a l =0.0;
for (int i =0; i<x . l ength ; i++)

t o t a l += x [i] ;
return t o t a l /x . l ength ;

}

public stat ic double var iance (double v1 [])
{

double sumd=0.0;
double t o t a l =0.0;
for (int i =0; i<v1 . l ength ; i++) {

t o t a l += v1 [i] ;
sumd += Math . pow(v1 [i] , 2) ;

}
return (sumd−(t o t a l ∗(t o t a l /v1 . l ength))) / ((v1 . l ength)−1);

}

public stat ic double sdev (double v1 [])
{

return Math . sq r t (var iance (v1)) ;
}

}

12

References

References

[1] Balaji, Raman. ”Introduction to Stochastic Finance”, University of Con-
necticut.

[2] Barker, Philip. Java Methods for Financial Engineering, Springer Pub-
lishing, May 2007.

[3] Charnes, John. ”Using Simulation for Option Pricing” School of Busi-
ness, The University of Kansas.

[4] Chance, Don. ”Essays in Derivatives”, Wiley Publishing, August 1998.

[5] Forsyth, Peter. ”An Introduction to Computational Finance without
Agonizing Pain”, School of Computer Science, University of Waterloo.

[6] Straja, Sorin. ”Stochastic Modeling of Stock Prices”, Montgomery In-
vestment Technology, Inc.

13

