
Automated Musical Part Writing

Kevin Deisz

01/23/2009

Abstract

This program writes music. Simply put, that is actually a rela-
tively accurate summary of what this program does. Through a series
of pseudo-randomly selected chords, user-generated constraints and
constraint satisfaction code, this program writes music. The output is
handled by a very handy programming language called lilypond, that
engraves the generated musical progression into an outputted png and
pdf. The output is also ported to a midi file so the user can hear what
the program just wrote.

1 Introduction and Background

1.1 Variations and Themes

In 1680, a man named Johann Pachelbel came up with a theme written for
three violins and a string bass. That theme was then arranged for a wide
variety of other ensembles, but the most important part was the theme itself.
Known as the Canon in D major, the sequence of notes became the basis for
many pieces of the era. Handel used it for the main theme in the second
movement of his Organ Concerto No. 11 in G minor, Mozart used it in Die
Zauberflote, and even Haydn used it (albeit many years before) in his Opus
50 No. 2. This progression can be found in many modern pieces; unwitting
artists perform this progression the unknowing crowds almost every day.
Such artists as Matchbox 20, Avril Lavigne, Green Day, Blues Traveler and
Aerosmith, to name a few. As demonstrated by this piece, it is not only the
progression that separates pieces, but the overlying, more ornamented parts.

1

What this program attempts to do is to show that the same progressions
can produce entirely different, random music. That even though the pieces
may be quoting each other, the generated output is actually almost entirely
unique. Therefore, this program writes its own music from user-specific vari-
ables, so as to allow the user to create unique music that may or may not be
based off of others work.

1.2 Background

Many people have attempted (and succesfully too), to create almost this
exact same project. Two examples are listed below.

1. Microsoft at one point created software that would take input from a
microphone, and then create harmonies and a chordal progression that
would play beneath the singer, as a sort of back-up music [7]. Their
product was called ”Songsmith”, and it involved simply singing into the
mic, and they advertised that it would do the rest for you. The product
recieved mixed review, with some articles saying that the quality of the
music was very poor, but that that was probably a good thing, because
music being generated by a computer being as good as that of a human
would be dangerous.

2. A man by the name of Bruce Jacob produced a product called ”vari-
ations”, which he used to write music for him. It is viewable on his
webpage, along with all of its source code and the scant documentation
he came up with [3]. The program goes by a set of constraints that
he set up to model his own style of composition, which he then filters
through a program he called the ”ear”. This ear program is actually a
genetic algorithm designed to filter out music that he himself doesn’t
like. Obviously this program is very specifically designed to his tastes,
but this is pretty much what I would be doing anyway. In reality, this
is the embodiment of my project, simply put to a different genre. Jacob
also came out with an essay on the subject of using algorithmic com-
position as a model for creativy, which ended up being very influencial
in how I looked at this project [2].

In addition to the products, there are many people and organizations
that have written numerous detailed reports on the subject of algorithmic
composition. Florida International University came out with a great essay

2

on the subject [1]. Stanford came out with a very helpful ”Brief History of
Algorithmic Composition” [6]. They also compiled an extensive bibliography
in which can be found many useful resources on the subject [5]. In short, this
is a subject that has been studied extensively, so I am only just brushing the
tip of the iceberg with this project.

2 Process

2.1 Bass Progression

The first step in the development of this project was to create a working
bass progression that would follow a general map of chords. This map of
chords was taken from the Tonal Harmony textbook, and works only for
major progressions. I then translated this map into a CSV file, where the
first item of each line was the number of the chord (called scale degrees),
and every other item in that line was a scale degree that that chord could
progress to. All of these chords are then read in, processed, and added to
a progressions array that is returned from the readin() method (viewable in
Appendix A under ”other methods.py”).

The next step, following the creation of the progression array, is to pass
through the step() method x number of times, where x is the user-specified
integer that was given at the very beginning. The incredibly simple step()
method simply takes the array of possible neighbors from the progressions
array and returns a random neighbor. This ensures that each and every
composition is unique, so as not to make it a formula. However, this does
pose some problems as to how to make the piece fit together as a whole,

3

because at some point there needs to be a repeated motif, and currently
returning a random chord does not lend itself well to this eventual goal.
Obviously this is a place for further work to be done.

2.2 Domains

Once the bass progression has been established, the domains for each chord
for each voice can be established. For the most basic music, without deviating
from the specific chordal tones, in each chord each voice can only be one of
three notes. These notes are scale degrees one, three and five, but these can
be in any octave. So, for each chord, each voice has an array of possible
values, and those values are filled with the first, third and fifth scale degree,
repeated for about three octaves. This gives each voice a relatively large
domain, and the constraint satisfaction code I slightly larger area to work in,
allowing the code a little more freedom, eventually resulting in slightly more
random music.

The domains themselves are created differently for different genres. In
jazz, for example, the scales are completely different, and the progressions
are determined entirely differently. Obviously Bach and Benny Goodman
composed with different approaches. In order to bridge this gap and make
the code more general, I’ve created a command-line argument for the mu-
sicwriter.py file that takes the filename of a python file and pulls the methods
from it (also in Appendix A). The methods are named the same in each file
so that it will not have to change names, and this way multiple files can
be created in the future. Hopefully in the future this could be a web-based
program, and these files could be generated by the user. For now however,
they are all created manually, and the only one created so far is voice.py,
which writes for four voices.

2.3 Constraints

The constraints, which are the basic partwriting rules broken down into their
own binary components, are relatively simple to implement. There is only
one constraint function, and the output is a boolean on whether or not the
tried chord was valid. The four inputs are voice A, note a, voice B, note
b. The voices are simply integers from 0 to 3, signifying soprano through
bass. The notes are numerical values which are indexes in the notes array
(in other methods.py).

4

The first, and probably most important constraint so far, is that a higher
voice cannot have lower notes than a lower voice. Other constraints include
parallel fifths, which mean that if two voices are four notes apart, the next
chord cannot see the same two voices at the same interval. Parallel octaves
are another, which is the exact same as parallel fifths, except that they are
seven notes apart. A more interesting constraint, that resulted in some pecu-
liar learned behavior, was that the voices could not be more than one octave
apart. In the beginning (before the domains were properly implemented),
because of this constraint, the entire piece would go as low as it possibly
could. The last constraint, which is still not done being written and imple-
mented, is that each chord must have a first degree (called the root), a third,
and a fifth. This constraint is going to be the most difficult to implement,
because not long is everything binary. In order for this to work, the note has
to be linked to not only its neighbor, but also every other note in the chord.
This involves ternary constraints, which will take quite a bit more research
before they are implemented.

In order to link all of the voices together, and to make sure that they
follow all of the rules created by the constraints, a map is created, and each
voice is added to the map. Each voice is then given an array, that contains
other mini-arrays that are simply pairs. Each pair contains a neighboring
voice (which in this case, neighboring means any and all), and a pointer to
the constraint function. This way, when it is time to choose the notes, the
code need simply parse through this array, pull out the neighbor, and pass
the neighbor and its attempted note to the constraint function dictated by
the pointer.

2.4 Constraint Satisfaction

Once the domain and constaint maps are created, it is time to pass everything
to the constraint satisfaction code. This code is actually entirely generic, and
has many other uses. A new map is created, called assignments, which will
be the output. This blank map is then passed to the main method in the
csp file (Appendix A, under csp solver 4.py), because the main method is a
recursive method that will stop when all of the assignments have been made.
The code itself implements its own relatively complex algorithms that are
separate from the actual music writing. These include a least-constraining
value function, which chooses the note that will leave the most options up to
its neighbors, a function that sorts by the amount of unassigned neighbors,

5

and a few other tricks to make it execute more quickly.

2.5 Ornamenting the Output

For now, this process is relatively simple, but in the future this is going to
be the portion of the process that makes the music the most unique. This is
the portion of the code that will add the non-chordal tones (NCTs), which
are the notes not defined by the bass progression (i.e. not the root, third
or fifth). Currently, the only NCTs that have been implemented are passing
tones, which are notes that are added between other chordal tones to produce
a scale-like effect. They are generated if a voice makes a jump over one note,
C to E for example. The ornament() method would then make the C an
eighth note, add in a D eighth note proceeding the C, and then end with an
E quarter note. This makes the music far more interesting, as up until this
point there was no variance in the rhythm. In the future, other NCTs will
be added to make it more interesting, like appoggiatura, escape tones, and
suspensions.

As of now, the only rhythmic deviation from straight quarter notes is
described above, except for the very end. The add ending() method takes
the array and very simply makes the last chord a whole note. This adds to
the music a sort of definitive ending that allows the listener to know that
is the point at which to clap. In the future, other rhythmic devices will be
implemented as well, such as syncopation and hemiola.

2.6 Output

Once all of the bass progression is decided, the constraints and domains
established, everything passed through the constraint satisfaction and the
output ornamented, it is finally time to print out the result. Thankfully,
there is a programming language much like LaTeX for music, called lilypond.
Lilypond has sections defined by back slashes, that allows the user to very
simply output their music with minimal effort. As is, the printout method
works wonders, which takes all four voices, and prints them out individually.
The top two voices are printed out in the upper staff, which is housed in the
treble clef, while the lower two voices are written in the bass clef, in the lower
staff. This paper will not go into the actual syntax of lilypond files, but you
can see the output in Appendix B.

6

Lilypond thankfully has a helpful utility that allows the user to also out-
put a midi file that contains the generated music. This means that every time
this program is run, it generates the sheet music, and then a midi file that
plays the sheet music. Since it is the same naming convention every time,
it was very easy to make a webpage in which to view this output. Hence, a
simple html page was written to house this project, the output and the midi,
viewable at http://www.tjhsst.edu/ kdeisz/?page=musicwriter. The midi
file and the generated png image will always be the latest files generated by
the program.

3 Results

The outputted music was surprisingly complex. The program generated rel-
atively good music, though there did lack a certain human touch. While one
could discover general themes throughout the music, its very clear that these
are completely circumstancial and not intended upon. The next major step
in this research is going to be how to have the program generate a general
theme for the piece and elaborate on that, because currently the randomness
weighs on the listener. Additionally, because the triads (chords with a root,
third and fifth) have not been fully implemented, at times the music seems
empty in the middle parts.

4 Appendix A - Code

4.1 musicwriter.py

1 #! usr / bin /python
2 # Kevin Deisz
3 #
4
5 import sys
6 import other methods
7 i n s t r u m e n t f i l e = i m p o r t (” instruments /” + sys . argv [1])
8
9 num chords = i n t (sys . argv [2])−1

10 p r o g r e s s i o n s = other methods . r ead in (”major . csv ”)
11
12 chords = [’1 ’]
13 f o r x in xrange (num chords) :

7

14 chords . append (other methods . s tep (p rog r e s s i on s , chords [x])
)

15
16 par t s = [[1 7 , 2 1 , 2 4 , 2 6]]
17 f o r x in xrange (l en (chords)−1) :
18 par t s . append (i n s t r u m e n t f i l e . begin (par t s [x] , chords [x+1])

)
19
20 f i n a l = []
21 f o r x in xrange (l en (par t s)) :
22 l i n e = []
23 f o r y in xrange (l en (par t s [x])) :
24 l i n e . append (other methods . getnote (par t s [x] [y]))
25 f i n a l . append (l i n e)
26 f i n a l 4 = other methods . s epara te (f i n a l)
27
28 f i n a l 3 = []
29 f i n a l 3 . append (f i n a l 4 [0])
30 f i n a l 3 . append (f i n a l 4 [1])
31 f i n a l 3 . append (other methods . ornament (f i n a l 4 [2]))
32 f i n a l 3 . append (other methods . ornament (f i n a l 4 [3]))
33
34 f i n a l 2 = other methods . add ending (f i n a l 3)
35 f o r part in f i n a l 2 :
36 i f part [0] [l en (part [0]) −1] != ”8” and part [0] [l en (part [0])

−1]:
37 part [0] = part [0] + ”4”
38
39 other methods . p r in tout (f i n a l 2)

4.2 other methods.py

1 import random , os , sys
2
3 de f add ending (par t s) :
4 f o r x in xrange (4) :
5 i f par t s [x] [l en (par t s [x]) −1][−1] == ”4” or par t s [x] [l en (

par t s [x]) −1][−1] == ”8” :
6 par t s [x] [l en (par t s [x]) −1] = par t s [x] [l en (par t s [x])

−1] [0 : l en (par t s [x] [l en (par t s [x]) −1])−1]
7 par t s [x] [l en (par t s [x]) −1] = par t s [x] [l en (par t s [x]) −1] +

”1”
8 return par t s
9

10 de f getnote (num) :

8

11 note names = [None , ”a , , , ” , ”b , , , ” ,
12 ”c , , ” , ”d , , ” , ”e , , ” , ” f , , ” , ”g , , ” , ”a , , ” , ”b , , ” ,
13 ”c , ” , ”d , ” , ”e , ” , ” f , ” , ”g , ” , ”a , ” , ”b , ” ,
14 ”c ” , ”d” , ”e ” , ” f ” , ”g ” , ”a ” , ”b” ,
15 ”c ’ ” , ”d ’ ” , ”e ’ ” , ” f ’ ” , ”g ’ ” , ”a ’ ” , ”b ’ ” ,
16 ”c ’ ’ ” , ”d ’ ’ ” , ”e ’ ’ ” , ” f ’ ’ ” , ”g ’ ’ ” , ”a ’ ’ ” , ”b ’ ’ ” ,
17 ”c ’ ’ ’ ” , ”d ’ ’ ’ ” , ”e ’ ’ ’ ” , ” f ’ ’ ’ ” , ”g ’ ’ ’ ” , ”a ’ ’ ’ ” , ”b ’ ’ ’ ” ,
18 ”c ’ ’ ’ ’ ”]
19 re turn note names [num]
20
21 de f getnum (note) :
22 note names = [None , ”a , , , ” , ”b , , , ” ,
23 ”c , , ” , ”d , , ” , ”e , , ” , ” f , , ” , ”g , , ” , ”a , , ” , ”b , , ” ,
24 ”c , ” , ”d , ” , ”e , ” , ” f , ” , ”g , ” , ”a , ” , ”b , ” ,
25 ”c ” , ”d” , ”e ” , ” f ” , ”g ” , ”a ” , ”b” ,
26 ”c ’ ” , ”d ’ ” , ”e ’ ” , ” f ’ ” , ”g ’ ” , ”a ’ ” , ”b ’ ” ,
27 ”c ’ ’ ” , ”d ’ ’ ” , ”e ’ ’ ” , ” f ’ ’ ” , ”g ’ ’ ” , ”a ’ ’ ” , ”b ’ ’ ” ,
28 ”c ’ ’ ’ ” , ”d ’ ’ ’ ” , ”e ’ ’ ’ ” , ” f ’ ’ ’ ” , ”g ’ ’ ’ ” , ”a ’ ’ ’ ” , ”b ’ ’ ’ ” ,
29 ”c ’ ’ ’ ’ ”]
30 f o r x in xrange (l en (note names)) :
31 i f note names [x] == note :
32 re turn x
33 return −1
34
35 de f ornament (part) :
36 r e t v a l = []
37 need4 = False
38
39 f o r note in xrange (l en (part)−1) :
40 f i r s t , second = getnum (part [note]) , getnum (part [note

+1])
41
42 i f abs (f i r s t −second)==2:
43 r e t v a l . append (”%s8 ” % (part [note]))
44 i f f i r s t > second :
45 r e t v a l . append (”%s ” % (getnote (getnum (part [

note])−1)))
46 e l s e :
47 r e t v a l . append (”%s ” % (getnote (getnum (part [

note])+1)))
48 need4 = True
49 e l s e :
50 i f need4 :
51 r e t v a l . append (”%s4 ” % (part [note]))
52 need4 = False

9

53 e l s e :
54 r e t v a l . append (part [note])
55 i f need4 :
56 r e t v a l . append (”%s4 ” % (part [l en (part)−1]))
57 need4 = False
58 e l s e :
59 r e t v a l . append (”%s ” % (part [l en (part)−1]))
60 return r e t v a l
61
62 de f p r in tout (par t s) :
63 fh = open (” output . l y ” , ”w”)
64 fh . wr i t e (”\\ ve r s i on \”2 .12 .1\”\n\n”)
65
66 de f p r i n t v o i c e (vo i c e) :
67 f o r x in vo i c e :
68 fh . wr i t e (”%s ” % (x))
69 fh . wr i t e (”} ”)
70
71 fh . wr i t e (”\\ header {\n”)
72 fh . wr i t e (”\ t t i t l e =\”Generated Music\”\n”)
73 fh . wr i t e (”\ tcomposer=\”Kevin Deisz \”\n”)
74 fh . wr i t e (”}\n\n”)
75
76 fh . wr i t e (”\\ s co r e {<<\n\ t \\new S t a f f <<\n”)
77 fh . wr i t e (”\ t \ t \\tempo 4=160\n”)
78 fh . wr i t e (”\ t \ t \\ c l e f t r e b l e \n\ t \ t { ”)
79 p r i n t v o i c e (par t s [3])
80
81 fh . wr i t e (”\\\\\n\ t \ t { ”)
82 p r i n t v o i c e (par t s [2])
83 fh . wr i t e (”\n\ t>>\n”)
84
85 fh . wr i t e (”\ t \\new S t a f f <<\n”)
86 fh . wr i t e (”\ t \ t \\tempo 4=160\n”)
87 fh . wr i t e (”\ t \ t \\ c l e f bass \n\ t \ t { ”)
88 p r i n t v o i c e (par t s [1])
89
90 fh . wr i t e (”\\\\\n\ t \ t { ”)
91 p r i n t v o i c e (par t s [0])
92 fh . wr i t e (”\n\ t>>\n>>\n”)
93
94 fh . wr i t e (”\ t \\midi{ }\n”)
95 fh . wr i t e (”\ t \\ l ayout { }\n}\n”)
96
97 fh . c l o s e ()

10

98 os . system (” l i l y p o n d −−png output . l y ”)
99

100 de f read in (f i l ename) :
101 f i l e = open (f i l ename , ” r ”)
102 temp = f i l e . read () . s p l i t (’\n ’) [: −1]
103
104 p r o g r e s s i o n s = []
105 f o r i in temp :
106 item = i . s p l i t (’ , ’) [1 :]
107 p r o g r e s s i o n s . append (item)
108 return p r o g r e s s i o n s
109
110 de f s epara te (par t s) :
111 r e t v a l = []
112
113 f o r part in xrange (4) :
114 l i n e = []
115 f o r chord in par t s :
116 l i n e . append (chord [part])
117 r e t v a l . append (l i n e)
118 return r e t v a l
119
120 de f sharp seventh (par t s) :
121 f o r part in par t s :
122 f o r x in range (1 , l en (part)) :
123 i f part [x] [0] == ”g ” :
124 part [x] = part [x] [0] + ” i s ” + part [x] [1 : l en (part

[x])]
125 return par t s
126
127 de f s tep (p rog r e s s i on s , curchord) :
128 ne ighbors = p r o g r e s s i o n s [i n t (curchord)−1]
129 return ne ighbors [random . rand int (0 , l en (ne ighbors)−1)]

4.3 voice.py

1 #! usr / bin /python
2 # Kevin Deisz
3 #
4
5 import sys
6 import other methods
7 import c s p s o l v e r 4
8
9 # −−− #

11

10
11 cur r ent chord = []
12 de f c o n s t r a i n t f u n c (A, a , B, b) : # −−− vo i c e c ro s s ing ,

d i s tanc ing , p a r a l l e l 5 ths and 8 ths −−− #
13 g l o b a l cur r ent chord
14 i f ((a<b and A<B) or (a>b and A>B)) :
15 i f abs (A−B)==1 and (abs (a−b)>7) :
16 re turn Fal se
17 i f A!=0 and B!=0 and (abs (cur r ent chord [A]−

cur r ent chord [B]) ==15 and abs (a−b)==15) :
18 re turn Fal se
19 i f A!=0 and B!=0 and (abs (cur r ent chord [A]−

cur r ent chord [B])==7 and abs (a−b)==7) :
20 return Fal se
21 i f (abs (cur r ent chord [A]− cur r ent chord [B])==4 and abs (a

−b)==4) :
22 return Fal se
23 return True
24 return Fal se
25
26 de f begin (current , next) :
27 next = i n t (next)
28 min , max = current [0] , cur r ent [3]
29
30 p o s s i b l e , opt ions = [next +2, next +4, next+6] , []
31 f o r x in xrange (l en (p o s s i b l e)) :
32 i f p o s s i b l e [x] > 7 :
33 p o s s i b l e [x] = p o s s i b l e [x]−7
34
35 f o r opt in p o s s i b l e :
36 f o r x in range (1 , 5) :
37 va l = opt+x∗7
38 i f va l < 12 or va l > 36 :
39 cont inue
40
41 i f (va l) > min and (va l) < max :
42 i f va l not in opt ions :
43 opt ions . append (va l)
44 e l i f abs ((va l) − min) < 4 :
45 i f va l not in opt ions :
46 opt ions . append (va l)
47 e l i f abs ((va l) − max) < 4 :
48 i f va l not in opt ions :
49 opt ions . append (va l)
50 return f i n d v a l u e s (current , opt i ons)

12

51
52 de f f i n d v a l u e s (current , opt i ons) :
53 g l o b a l cur r ent chord
54 cur r ent chord = current
55
56 domains = {}
57 f o r x in xrange (l en (cur rent)) :
58 domain = []
59 f o r y in opt ions :
60 i f abs (cur rent [x]−y) < 4 :
61 domain . append (y)
62 domains [x] = domain
63 l imi t domains (domains)
64
65 gr id , c o n s t r a i n t s = {} , {}
66 f o r x in xrange (4) :
67 g r id [x] = []
68 f o r y in xrange (4) :
69 i f x!=y :
70 g r id [x] . append (y)
71 f o r node in g r id :
72 c o n s t r a i n t s [node] = []
73 f o r ne ighbor in g r id [node] :
74 c o n s t r a i n t s [node] . append ([neighbor ,

c o n s t r a i n t f u n c])
75
76 ass ignments = {}
77 c s p s o l v e r 4 . backtrack ing (domains , ass ignments , c o n s t r a i n t s

)
78
79 r e t v a l = []
80 f o r x in xrange (l en (ass ignments)) :
81 r e t v a l . append (ass ignments [x])
82 re turn r e t v a l
83
84 de f l imi t domains (domains) :
85 f o r x in domains [0] :
86 i f x<13 or x>22:
87 domains [0] . remove (x)
88 f o r x in domains [1] :
89 i f x<17 or x>26:
90 domains [1] . remove (x)
91 f o r x in domains [2] :
92 i f x<20 or x>29:
93 domains [2] . remove (x)

13

94 f o r x in domains [3] :
95 i f x<25 or x>34:
96 domains [3] . remove (x)
97
98 # −−− #

5 Appendix B - Output

5.1 Lilypond

1 \ v e r s i on ”2 . 12 . 1”
2
3 \header {
4 t i t l e =”Generated Music”
5 composer=”Kevin Deisz ”
6 }
7
8 \ s co r e {<<
9 \new S t a f f <<

10 \tempo 4=160
11 \ c l e f t r e b l e
12 { e ’ 4 a ’ d ’ ’ 8 c ’ ’ b ’ 4 c ’ ’ c ’ ’ f ’ ’ 8 e ’ ’ d ’ ’ 4 c ’ ’ d ’ ’ 8 c ’ ’

b ’ 4 e ’ ’ 8 d ’ ’ c ’ ’ 4 b ’ e ’ ’ d ’ ’ 8 c ’ ’ b ’ 4 c ’ ’ c ’ ’ d ’ ’ 8 c
’ ’ b ’ 4 e ’ ’ 8 d ’ ’ c ’ ’ 4 f ’ ’ 8 e ’ ’ d ’ ’ 4 a ’ 8 b ’ c ’ ’ 4 b ’ e ’ ’
d ’ ’ d ’ ’ c ’ ’ 8 d ’ ’ e ’ ’ 8 d ’ ’ c ’ ’ 4 d ’ ’ d ’ ’ c ’ ’ c ’ ’ g ’ c

’ ’ g ’ f ’ b ’ e ’ ’ b ’ a ’ b ’ e ’ ’ b ’ a ’ b ’ e ’ ’ d ’ ’ 8 c ’ ’ b
’ 4 c ’ ’ d ’ ’ c ’ ’ c ’ ’ b ’ e ’ ’ b ’ a ’ b ’ e ’ ’ b ’ a ’ d ’ ’ d ’ ’
c ’ ’ 1 } \\

13 { c ’ 4 f ’ 8 e ’ d ’ 4 g ’ 8 f ’ e ’ 4 a ’ 8 g ’ f ’ 4 g ’ 8 f ’ e ’ 4 d ’ 8 e ’
f ’ 4 e ’ f ’ f ’ e ’ a ’ 8 g ’ f ’ 4 e ’ a ’ 8 g ’ f ’ 4 f ’ e ’ a ’ 8 g

’ f ’ 4 g ’ 8 f ’ e ’ 4 f ’ f ’ e ’ a ’ g ’ g ’ 8 f ’ e ’ 4 f ’ f ’ f ’ e
’ f ’ 8 e ’ d ’ 4 c ’ 8 d ’ e ’ 8 d ’ c ’ 4 d ’ e ’ 8 f ’ g ’ 4 f ’ 8 e ’ d
’ 4 e ’ 8 f ’ g ’ 4 f ’ 8 e ’ d ’ 4 e ’ a ’ 8 g ’ f ’ 4 e ’ f ’ e ’ f ’ f ’
e ’ 8 f ’ g ’ 4 f ’ 8 e ’ d ’ 4 e ’ 8 f ’ g ’ 4 f ’ f ’ g ’ g ’ 1 }

14 >>
15 \new S t a f f <<
16 \tempo 4=160
17 \ c l e f bass
18 { g4 f a g g a a g c ’ a b c ’ a b c ’ d ’ d ’ c ’ a a b c ’ c ’

a g a a b c ’ d ’ b c ’ b a d ’ b c ’ a g e e a b c ’ e ’ c
’ b c ’ e ’ c ’ b c ’ d ’ d ’ c ’ b c ’ a b c ’ e ’ c ’ b c ’ e ’
c ’ d ’ b c ’ 1 } \\

19 { c4 a , d b , c c f d c d d e f d e d d c c d d e a f d a
, a , d e d g e e f d b , e f d c g , a , d e e f d e e f
d e d d c b , e f d e e f d e e f d g e1 }

14

20 >>
21 >>
22 \midi{ }
23 \ l ayout { }
24 }

5.2 Music

References

[1] Burns, Kristine H. ”Algorithmic Composition”. Septem-
ber 1996. Florida International University. 23 Jan. 2009
<http://eamusic.dartmouth.edu/̃ wowem/hardware/algorithmdefinition.html>.

[2] Jacob, Bruce. ”Algorithmic Compositions As A Model
Of Creativity”. University of Maryland. 23 Jan. 2009
<http://www.ece.umd.edu/̃ blj/algorithmic composition/algorithmicmodel.html>.

15

[3] Jacob, Bruce. ”VARIATIONS: Algorithmic Compositions for
Acoustic Instruments.” University of Maryland. 20 Jan. 2009
<http://www.ece.umd.edu/̃ blj/algorithmic composition/>.

[4] Kostka, Stefan and Payne, Dorothy (1996). Tonal Harmony: With An
Introduction To Twentieth Century Music. 3rd ed. McGraw-Hill, Inc.:
San Francisco.

[5] Kunze, Tobias. ”Algorithmic Composition Bibliography”.
1998. Stanford University. 16 Jan. 2009 <http://ccrma-
www.stanford.edu/̃ tkunze/res/algobib.html>.

[6] Maurer, John A. ”A Brief History of Algorithmic Com-
position”. March 1999. Stanford University. 19 Jan. 2009
<http://ccrma.stanford.edu/̃ blackrse/algorithm.html>.

[7] ”Microsoft Research Songsmith”. 2009. Microsoft Corpo-
ration. 22 Jan. 2009 <http://research.microsoft.com/en-
us/um/redmond/projects/songsmith/>.

16

