
Automated Musical Part Writing

Kevin Deisz

03/26/2009

Abstract
This program writes music. Simply put, that is actually a relatively

accurate summary of what this program does. Through a series of pseudo-
randomly selected chords, user-generated constraints and constraint satis-
faction code, this program writes music. The output is handled by a very
handy programming language called lilypond, that engraves the generated
musical progression into an outputted png and pdf. The output is also
ported to a midi file so the user can hear what the program just wrote.

1 Introduction and Background

1.1 Variations and Themes

In 1680, a man named Johann Pachelbel came up with a theme written for three
violins and a string bass. That theme was then arranged for a wide variety of
other ensembles, but the most important part was the theme itself. Known as
the Canon in D major, the sequence of notes became the basis for many pieces
of the era. Handel used it for the main theme in the second movement of his
Organ Concerto No. 11 in G minor, Mozart used it in Die Zauberflote, and
even Haydn used it (albeit many years before) in his Opus 50 No. 2. This
progression can be found in many modern pieces; unwitting artists perform this
progression the unknowing crowds almost every day. Such artists as Matchbox
20, Avril Lavigne, Green Day, Blues Traveler and Aerosmith, to name a few. As
demonstrated by this piece, it is not only the progression that separates pieces,
but the overlying, more ornamented parts.

What this program attempts to do is to show that the same progressions
can produce entirely different, random music. That even though the pieces may
be quoting each other, the generated output is actually almost entirely unique.
Therefore, this program writes its own music from user-specific variables, so as
to allow the user to create unique music that may or may not be based off of
others work.

1.2 Background

Many people have attempted (and succesfully too), to create almost this exact
same project. Two examples are listed below.

1

1. Microsoft at one point created software that would take input from a
microphone, and then create harmonies and a chordal progression that
would play beneath the singer, as a sort of back-up music [7]. Their
product was called ”Songsmith”, and it involved simply singing into the
mic, and they advertised that it would do the rest for you. The product
recieved mixed review, with some articles saying that the quality of the
music was very poor, but that that was probably a good thing, because
music being generated by a computer being as good as that of a human
would be dangerous.

2. A man by the name of Bruce Jacob produced a product called ”variations”,
which he used to write music for him. It is viewable on his webpage, along
with all of its source code and the scant documentation he came up with
[3]. The program goes by a set of constraints that he set up to model
his own style of composition, which he then filters through a program he
called the ”ear”. This ear program is actually a genetic algorithm designed
to filter out music that he himself doesn’t like. Obviously this program
is very specifically designed to his tastes, but this is pretty much what I
would be doing anyway. In reality, this is the embodiment of my project,
simply put to a different genre. Jacob also came out with an essay on the
subject of using algorithmic composition as a model for creativy, which
ended up being very influencial in how I looked at this project [2].

In addition to the products, there are many people and organizations that
have written numerous detailed reports on the subject of algorithmic composi-
tion. Florida International University came out with a great essay on the subject
[1]. Stanford came out with a very helpful ”Brief History of Algorithmic Com-
position” [6]. They also compiled an extensive bibliography in which can be
found many useful resources on the subject [5]. In short, this is a subject that
has been studied extensively, so I am only just brushing the tip of the iceberg
with this project.

2 Process

2.1 Bass Progression

The first step in the development of this project was to create a working bass
progression that would follow a general map of chords. This map of chords was
taken from the Tonal Harmony textbook, and works only for major progressions.
I then translated this map into a CSV file, where the first item of each line was
the number of the chord (called scale degrees), and every other item in that line
was a scale degree that that chord could progress to. All of these chords are
then read in, processed, and added to a progressions array that is returned from
the readin() method (viewable in Appendix A under ”other methods.py”).

2

The next step, following the creation of the progression array, is to pass
through the step() method x number of times, where x is the user-specified
integer that was given at the very beginning. The incredibly simple step()
method simply takes the array of possible neighbors from the progressions array
and returns a random neighbor. This ensures that each and every composition is
unique, so as not to make it a formula. However, this does pose some problems
as to how to make the piece fit together as a whole, because at some point there
needs to be a repeated motif, and currently returning a random chord does not
lend itself well to this eventual goal. Obviously this is a place for further work
to be done.

2.2 Secondary Dominants

I created a certain area of this project that added some difficulty for me. I added
in secondary dominants, an area of music that makes everything slightly more
advanced. These secondary dominant chords b̈orrowc̈hords from other keys and
then place them in the regular key. Since my program outputs music in the key
of C, the easiest example is a D major chord. Since G is the dominant in C
major, and D is the dominant in G major (with an F#), D F# A is a secondary
dominant of the dominant and C major. These chords added much depth to
the music created.

2.3 Domains

Once the bass progression has been established, the domains for each chord
for each voice can be established. For the most basic music, without deviating
from the specific chordal tones, in each chord each voice can only be one of three
notes. These notes are scale degrees one, three and five, but these can be in
any octave. So, for each chord, each voice has an array of possible values, and
those values are filled with the first, third and fifth scale degree, repeated for
about three octaves. This gives each voice a relatively large domain, and the
constraint satisfaction code I slightly larger area to work in, allowing the code
a little more freedom, eventually resulting in slightly more random music.

3

The domains themselves are created differently for different genres. In jazz,
for example, the scales are completely different, and the progressions are de-
termined entirely differently. Obviously Bach and Benny Goodman composed
with different approaches. In order to bridge this gap and make the code more
general, I’ve created a command-line argument for the musicwriter.py file that
takes the filename of a python file and pulls the methods from it (also in Ap-
pendix A). The methods are named the same in each file so that it will not
have to change names, and this way multiple files can be created in the future.
Hopefully in the future this could be a web-based program, and these files could
be generated by the user. For now however, they are all created manually, and
the only one created so far is voice.py, which writes for four voices.

2.4 Constraints

The constraints, which are the basic partwriting rules broken down into their
own binary components, are relatively simple to implement. There is only one
constraint function, and the output is a boolean on whether or not the tried
chord was valid. The four inputs are voice A, note a, voice B, note b. The voices
are simply integers from 0 to 3, signifying soprano through bass. The notes are
numerical values which are indexes in the notes array (in other methods.py).

The first, and probably most important constraint so far, is that a higher
voice cannot have lower notes than a lower voice. Other constraints include
parallel fifths, which mean that if two voices are four notes apart, the next chord
cannot see the same two voices at the same interval. Parallel octaves are another,
which is the exact same as parallel fifths, except that they are seven notes apart.
A more interesting constraint, that resulted in some peculiar learned behavior,
was that the voices could not be more than one octave apart. In the beginning
(before the domains were properly implemented), because of this constraint, the
entire piece would go as low as it possibly could. The last constraint, which is
still not done being written and implemented, is that each chord must have a
first degree (called the root), a third, and a fifth. This constraint is going to
be the most difficult to implement, because not long is everything binary. In
order for this to work, the note has to be linked to not only its neighbor, but
also every other note in the chord. This involves ternary constraints, which will
take quite a bit more research before they are implemented.

In order to link all of the voices together, and to make sure that they follow
all of the rules created by the constraints, a map is created, and each voice is
added to the map. Each voice is then given an array, that contains other mini-
arrays that are simply pairs. Each pair contains a neighboring voice (which
in this case, neighboring means any and all), and a pointer to the constraint
function. This way, when it is time to choose the notes, the code need simply
parse through this array, pull out the neighbor, and pass the neighbor and its
attempted note to the constraint function dictated by the pointer.

4

2.5 Constraint Satisfaction

Once the domain and constaint maps are created, it is time to pass everything
to the constraint satisfaction code. This code is actually entirely generic, and
has many other uses. A new map is created, called assignments, which will be
the output. This blank map is then passed to the main method in the csp file
(Appendix A, under csp solver 4.py), because the main method is a recursive
method that will stop when all of the assignments have been made. The code
itself implements its own relatively complex algorithms that are separate from
the actual music writing. These include a least-constraining value function,
which chooses the note that will leave the most options up to its neighbors,
a function that sorts by the amount of unassigned neighbors, and a few other
tricks to make it execute more quickly.

2.6 Ornamenting the Output

For now, this process is relatively simple, but in the future this is going to be the
portion of the process that makes the music the most unique. This is the portion
of the code that will add the non-chordal tones (NCTs), which are the notes
not defined by the bass progression (i.e. not the root, third or fifth). Currently,
the only NCTs that have been implemented are passing tones, which are notes
that are added between other chordal tones to produce a scale-like effect. They
are generated if a voice makes a jump over one note, C to E for example. The
ornament() method would then make the C an eighth note, add in a D eighth
note proceeding the C, and then end with an E quarter note. This makes the
music far more interesting, as up until this point there was no variance in the
rhythm. In the future, other NCTs will be added to make it more interesting,
like appoggiatura, escape tones, and suspensions.

As of now, the only rhythmic deviation from straight quarter notes is de-
scribed above, except for the very end. The add ending() method takes the
array and very simply makes the last chord a whole note. This adds to the mu-
sic a sort of definitive ending that allows the listener to know that is the point
at which to clap. In the future, other rhythmic devices will be implemented as
well, such as syncopation and hemiola.

2.7 Output

Once all of the bass progression is decided, the constraints and domains es-
tablished, everything passed through the constraint satisfaction and the output
ornamented, it is finally time to print out the result. Thankfully, there is a pro-
gramming language much like LaTeX for music, called lilypond. Lilypond has
sections defined by back slashes, that allows the user to very simply output their
music with minimal effort. As is, the printout method works wonders, which
takes all four voices, and prints them out individually. The top two voices are
printed out in the upper staff, which is housed in the treble clef, while the lower
two voices are written in the bass clef, in the lower staff. This paper will not go

5

into the actual syntax of lilypond files, but you can see the output in Appendix
B.

Lilypond thankfully has a helpful utility that allows the user to also output
a midi file that contains the generated music. This means that every time this
program is run, it generates the sheet music, and then a midi file that plays
the sheet music. Since it is the same naming convention every time, it was
very easy to make a webpage in which to view this output. Hence, a simple
html page was written to house this project, the output and the midi, viewable
at http://www.tjhsst.edu/ kdeisz/?page=musicwriter. The midi file and the
generated png image will always be the latest files generated by the program.

3 Results

The outputted music was surprisingly complex. The program generated rela-
tively good music, though there did lack a certain human touch. While one
could discover general themes throughout the music, its very clear that these
are completely circumstancial and not intended upon. The next major step in
this research is going to be how to have the program generate a general theme
for the piece and elaborate on that, because currently the randomness weighs
on the listener. Additionally, because the triads (chords with a root, third and
fifth) have not been fully implemented, at times the music seems empty in the
middle parts.

4 Appendix A - Code

4.1 musicwriter.py

1 #!usr / bin /python
2 # Kevin Deisz
3 #
4
5 import sys
6 import other methods
7 i n s t r umen t f i l e = impo r t (” instruments /” + sys . argv [1])
8
9 num chords = in t (sys . argv [2])−1

10 p r og r e s s i o n s = other methods . r ead in (”major . csv ”)
11
12 chords = [’1 ’]
13 f o r x in xrange (num chords) :
14 chords . append (other methods . s tep (p rog r e s s i on s , chords [x]))
15
16 par t s = [[1 7 , 2 1 , 2 4 , 2 6]]
17 f o r x in xrange (l en (chords)−1) :
18 par t s . append (i n s t r umen t f i l e . begin (par t s [x] , chords [x+1]))
19
20 f i n a l = []
21 f o r x in xrange (l en (par t s)) :
22 l i n e = []

6

23 f o r y in xrange (l en (par t s [x])) :
24 l i n e . append (other methods . getnote (par t s [x] [y]))
25 f i n a l . append (l i n e)
26 f i n a l 4 = other methods . s epara t e (f i n a l)
27
28 f i n a l 3 = []
29 f i n a l 3 . append (f i n a l 4 [0])
30 f i n a l 3 . append (f i n a l 4 [1])
31 f i n a l 3 . append (other methods . ornament (f i n a l 4 [2]))
32 f i n a l 3 . append (other methods . ornament (f i n a l 4 [3]))
33
34 f i n a l 2 = other methods . add ending (f i n a l 3)
35 f o r part in f i n a l 2 :
36 i f part [0] [l en (part [0]) −1] != ”8” and part [0] [l en (part [0]) −1]:
37 part [0] = part [0] + ”4”
38
39 other methods . p r in tout (f i n a l 2)

4.2 other methods.py

1 import random , os , sys
2
3 de f add ending (par t s) :
4 f o r x in xrange (4) :
5 i f par t s [x] [l en (par t s [x]) −1][−1] == ”4” or par t s [x] [l en (

par t s [x]) −1][−1] == ”8” :
6 par t s [x] [l en (par t s [x]) −1] = par t s [x] [l en (par t s [x])

−1] [0 : l en (par t s [x] [l en (par t s [x]) −1])−1]
7 par t s [x] [l en (par t s [x]) −1] = par t s [x] [l en (par t s [x]) −1] + ”1”
8 re turn par t s
9

10 de f getnote (num) :
11 note names = [None , ”a , , , ” , ”b , , , ” ,
12 ”c , , ” , ”d , , ” , ”e , , ” , ” f , , ” , ”g , , ” , ”a , , ” , ”b , , ” ,
13 ”c , ” , ”d , ” , ”e , ” , ” f , ” , ”g , ” , ”a , ” , ”b , ” ,
14 ”c ” , ”d” , ”e ” , ” f ” , ”g ” , ”a ” , ”b” ,
15 ”c ’ ” , ”d ’ ” , ”e ’ ” , ” f ’ ” , ”g ’ ” , ”a ’ ” , ”b ’ ” ,
16 ”c ’ ’ ” , ”d ’ ’ ” , ”e ’ ’ ” , ” f ’ ’ ” , ”g ’ ’ ” , ”a ’ ’ ” , ”b ’ ’ ” ,
17 ”c ’ ’ ’ ” , ”d ’ ’ ’ ” , ”e ’ ’ ’ ” , ” f ’ ’ ’ ” , ”g ’ ’ ’ ” , ”a ’ ’ ’ ” , ”b ’ ’ ’ ” ,
18 ”c ’ ’ ’ ’ ”]
19 re turn note names [num]
20
21 de f getnum(note) :
22 note names = [None , ”a , , , ” , ”b , , , ” ,
23 ”c , , ” , ”d , , ” , ”e , , ” , ” f , , ” , ”g , , ” , ”a , , ” , ”b , , ” ,
24 ”c , ” , ”d , ” , ”e , ” , ” f , ” , ”g , ” , ”a , ” , ”b , ” ,
25 ”c ” , ”d” , ”e ” , ” f ” , ”g ” , ”a ” , ”b” ,
26 ”c ’ ” , ”d ’ ” , ”e ’ ” , ” f ’ ” , ”g ’ ” , ”a ’ ” , ”b ’ ” ,
27 ”c ’ ’ ” , ”d ’ ’ ” , ”e ’ ’ ” , ” f ’ ’ ” , ”g ’ ’ ” , ”a ’ ’ ” , ”b ’ ’ ” ,
28 ”c ’ ’ ’ ” , ”d ’ ’ ’ ” , ”e ’ ’ ’ ” , ” f ’ ’ ’ ” , ”g ’ ’ ’ ” , ”a ’ ’ ’ ” , ”b ’ ’ ’ ” ,
29 ”c ’ ’ ’ ’ ”]
30 f o r x in xrange (l en (note names)) :
31 i f note names [x] == note :
32 re turn x
33 re turn −1
34
35 de f ornament (part) :

7

36 r e t v a l = []
37 need4 = False
38
39 f o r note in xrange (l en (part)−1) :
40 f i r s t , second = getnum(part [note]) , getnum(part [note+1]

)
41
42 i f abs (f i r s t −second)==2:
43 r e t v a l . append (”%s8 ” % (part [note]))
44 i f f i r s t > second :
45 r e t v a l . append (”%s” % (getnote (getnum(part [note]

)−1)))
46 e l s e :
47 r e t v a l . append (”%s” % (getnote (getnum(part [note]

)+1)))
48 need4 = True
49 e l s e :
50 i f need4 :
51 r e t v a l . append (”%s4 ” % (part [note]))
52 need4 = False
53 e l s e :
54 r e t v a l . append (part [note])
55 i f need4 :
56 r e t v a l . append (”%s4 ” % (part [l en (part)−1]))
57 need4 = False
58 e l s e :
59 r e t v a l . append (”%s” % (part [l en (part)−1]))
60 re turn r e t v a l
61
62 de f p r in tout (par t s) :
63 fh = open (”output . l y ” , ”w”)
64 fh . wr i t e (”\\ ve r s i on \”2 .12 .1\”\n\n”)
65
66 de f p r i n t v o i c e (vo i c e) :
67 f o r x in vo i c e :
68 fh . wr i t e (”%s ” % (x))
69 fh . wr i t e (”} ”)
70
71 fh . wr i t e (”\\ header {\n”)
72 fh . wr i t e (”\ t t i t l e =\”Generated Music\”\n”)
73 fh . wr i t e (”\ tcomposer=\”Kevin Deisz \”\n”)
74 fh . wr i t e (”}\n\n”)
75
76 fh . wr i t e (”\\ s co r e {<<\n\ t \\new S t a f f <<\n”)
77 fh . wr i t e (”\ t \ t \\tempo 4=160\n”)
78 fh . wr i t e (”\ t \ t \\ c l e f t r e b l e \n\ t \ t { ”)
79 p r i n t v o i c e (par t s [3])
80
81 fh . wr i t e (”\\\\\n\ t \ t { ”)
82 p r i n t v o i c e (par t s [2])
83 fh . wr i t e (”\n\ t>>\n”)
84
85 fh . wr i t e (”\ t \\new S t a f f <<\n”)
86 fh . wr i t e (”\ t \ t \\tempo 4=160\n”)
87 fh . wr i t e (”\ t \ t \\ c l e f bass \n\ t \ t { ”)
88 p r i n t v o i c e (par t s [1])
89

8

90 fh . wr i t e (”\\\\\n\ t \ t { ”)
91 p r i n t v o i c e (par t s [0])
92 fh . wr i t e (”\n\ t>>\n>>\n”)
93
94 fh . wr i t e (”\ t \\midi{ }\n”)
95 fh . wr i t e (”\ t \\ l ayout { }\n}\n”)
96
97 fh . c l o s e ()
98 os . system (” l i l ypond −−png output . l y ”)
99

100 de f read in (f i l ename) :
101 f i l e = open (f i l ename , ” r ”)
102 temp = f i l e . read () . s p l i t (’\n ’) [: −1]
103
104 p r o g r e s s i on s = []
105 f o r i in temp :
106 item = i . s p l i t (’ , ’) [1 :]
107 p r o g r e s s i on s . append (item)
108 re turn p r o g r e s s i o n s
109
110 de f s epara t e (par t s) :
111 r e t v a l = []
112
113 f o r part in xrange (4) :
114 l i n e = []
115 f o r chord in par t s :
116 l i n e . append (chord [part])
117 r e t v a l . append (l i n e)
118 re turn r e t v a l
119
120 de f sharp seventh (par t s) :
121 f o r part in par t s :
122 f o r x in range (1 , l en (part)) :
123 i f part [x] [0] == ”g ” :
124 part [x] = part [x] [0] + ” i s ” + part [x] [1 : l en (part [x

])]
125 re turn par t s
126
127 de f s tep (p rog r e s s i on s , curchord) :
128 ne ighbors = p rog r e s s i o n s [i n t (curchord)−1]
129 re turn ne ighbors [random . rand int (0 , l en (ne ighbors)−1)]

4.3 voice.py

1 #!usr / bin /python
2 # Kevin Deisz
3 #
4
5 import sys
6 import other methods
7 import c s p s o l v e r 4
8
9 # −−− #

10
11 cur rent chord = []
12 de f c on s t r a i n t f un c (A, a , B, b) : # −−− vo i c e c ro s s ing , d i s tanc ing

, p a r a l l e l 5 ths and 8 ths −−− #

9

13 g l oba l cur r ent chord
14 i f ((a<b and A<B) or (a>b and A>B)) :
15 i f abs (A−B)==1 and (abs (a−b)>7) :
16 re turn Fa l se
17 i f A!=0 and B!=0 and (abs (cur r ent chord [A]− cur r ent chord [B

])==15 and abs (a−b)==15) :
18 re turn Fa l se
19 i f A!=0 and B!=0 and (abs (cur r ent chord [A]− cur r ent chord [B

])==7 and abs (a−b)==7) :
20 re turn Fa l se
21 i f (abs (cur r ent chord [A]− cur r ent chord [B])==4 and abs (a−b)

==4) :
22 re turn Fa l se
23 re turn True
24 re turn Fa l se
25
26 de f begin (current , next) :
27 next = in t (next)
28 min , max = current [0] , cu r r ent [3]
29
30 po s s i b l e , opt i ons = [next+2, next+4, next+6] , []
31 f o r x in xrange (l en (p o s s i b l e)) :
32 i f p o s s i b l e [x] > 7 :
33 p o s s i b l e [x] = po s s i b l e [x]−7
34
35 f o r opt in p o s s i b l e :
36 f o r x in range (1 , 5) :
37 va l = opt+x∗7
38 i f va l < 12 or va l > 36 :
39 cont inue
40
41 i f (va l) > min and (va l) < max :
42 i f va l not in opt ions :
43 opt ions . append (va l)
44 e l i f abs ((va l) − min) < 4 :
45 i f va l not in opt ions :
46 opt ions . append (va l)
47 e l i f abs ((va l) − max) < 4 :
48 i f va l not in opt ions :
49 opt ions . append (va l)
50 re turn f i ndva l u e s (current , opt ions)
51
52 de f f i ndva l u e s (current , opt i ons) :
53 g l oba l cur r ent chord
54 cur r ent chord = cur rent
55
56 domains = {}
57 f o r x in xrange (l en (cur rent)) :
58 domain = []
59 f o r y in opt ions :
60 i f abs (cur r ent [x]−y) < 4 :
61 domain . append (y)
62 domains [x] = domain
63 l imi t domains (domains)
64
65 gr id , c o n s t r a i n t s = {} , {}
66 f o r x in xrange (4) :

10

67 g r id [x] = []
68 f o r y in xrange (4) :
69 i f x!=y :
70 g r id [x] . append (y)
71 f o r node in g r id :
72 c on s t r a i n t s [node] = []
73 f o r ne ighbor in g r id [node] :
74 c on s t r a i n t s [node] . append ([neighbor , c on s t r a i n t f un c

])
75
76 ass ignments = {}
77 c s p s o l v e r 4 . backtrack ing (domains , ass ignments , c on s t r a i n t s)
78
79 r e t v a l = []
80 f o r x in xrange (l en (ass ignments)) :
81 r e t v a l . append (ass ignments [x])
82 re turn r e t v a l
83
84 de f l imi t domains (domains) :
85 f o r x in domains [0] :
86 i f x<13 or x>22:
87 domains [0] . remove (x)
88 f o r x in domains [1] :
89 i f x<17 or x>26:
90 domains [1] . remove (x)
91 f o r x in domains [2] :
92 i f x<20 or x>29:
93 domains [2] . remove (x)
94 f o r x in domains [3] :
95 i f x<25 or x>34:
96 domains [3] . remove (x)
97
98 # −−− #

5 Appendix B - Output

5.1 Lilypond

1 \ ve r s i on ”2 . 12 . 1”
2
3 \header {
4 t i t l e =”Generated Music”
5 composer=”Kevin Deisz ”
6 }
7
8 \ s co r e {<<
9 \new S t a f f <<

10 \tempo 4=160
11 \ c l e f t r e b l e
12 { e ’ 4 a ’ d ’ ’ 8 c ’ ’ b ’ 4 c ’ ’ c ’ ’ f ’ ’ 8 e ’ ’ d ’ ’ 4 c ’ ’ d ’ ’ 8 c ’ ’ b

’ 4 e ’ ’ 8 d ’ ’ c ’ ’ 4 b ’ e ’ ’ d ’ ’ 8 c ’ ’ b ’ 4 c ’ ’ c ’ ’ d ’ ’ 8 c ’ ’ b
’ 4 e ’ ’ 8 d ’ ’ c ’ ’ 4 f ’ ’ 8 e ’ ’ d ’ ’ 4 a ’ 8 b ’ c ’ ’ 4 b ’ e ’ ’ d ’ ’ d
’ ’ c ’ ’ 8 d ’ ’ e ’ ’ 8 d ’ ’ c ’ ’ 4 d ’ ’ d ’ ’ c ’ ’ c ’ ’ g ’ c ’ ’ g ’ f ’
b ’ e ’ ’ b ’ a ’ b ’ e ’ ’ b ’ a ’ b ’ e ’ ’ d ’ ’ 8 c ’ ’ b ’ 4 c ’ ’ d ’ ’ c
’ ’ c ’ ’ b ’ e ’ ’ b ’ a ’ b ’ e ’ ’ b ’ a ’ d ’ ’ d ’ ’ c ’ ’ 1 } \\

11

13 { c ’ 4 f ’ 8 e ’ d ’ 4 g ’ 8 f ’ e ’ 4 a ’ 8 g ’ f ’ 4 g ’ 8 f ’ e ’ 4 d ’ 8 e ’ f
’ 4 e ’ f ’ f ’ e ’ a ’ 8 g ’ f ’ 4 e ’ a ’ 8 g ’ f ’ 4 f ’ e ’ a ’ 8 g ’ f
’ 4 g ’ 8 f ’ e ’ 4 f ’ f ’ e ’ a ’ g ’ g ’ 8 f ’ e ’ 4 f ’ f ’ f ’ e ’ f ’ 8
e ’ d ’ 4 c ’ 8 d ’ e ’ 8 d ’ c ’ 4 d ’ e ’ 8 f ’ g ’ 4 f ’ 8 e ’ d ’ 4 e ’ 8

f ’ g ’ 4 f ’ 8 e ’ d ’ 4 e ’ a ’ 8 g ’ f ’ 4 e ’ f ’ e ’ f ’ f ’ e ’ 8 f ’ g
’ 4 f ’ 8 e ’ d ’ 4 e ’ 8 f ’ g ’ 4 f ’ f ’ g ’ g ’ 1 }

14 >>
15 \new S t a f f <<
16 \tempo 4=160
17 \ c l e f bass
18 { g4 f a g g a a g c ’ a b c ’ a b c ’ d ’ d ’ c ’ a a b c ’ c ’ a

g a a b c ’ d ’ b c ’ b a d ’ b c ’ a g e e a b c ’ e ’ c ’ b c
’ e ’ c ’ b c ’ d ’ d ’ c ’ b c ’ a b c ’ e ’ c ’ b c ’ e ’ c ’ d ’ b
c ’ 1 } \\

19 { c4 a , d b , c c f d c d d e f d e d d c c d d e a f d a , a
, d e d g e e f d b , e f d c g , a , d e e f d e e f d e
d d c b , e f d e e f d e e f d g e1 }

20 >>
21 >>
22 \midi{ }
23 \ l ayout { }
24 }

5.2 Music

12

References

[1] Burns, Kristine H. ”Algorithmic Composition”. Septem-
ber 1996. Florida International University. 23 Jan. 2009
<http://eamusic.dartmouth.edu/̃ wowem/hardware/algorithmdefinition.html>.

[2] Jacob, Bruce. ”Algorithmic Compositions As A Model
Of Creativity”. University of Maryland. 23 Jan. 2009
<http://www.ece.umd.edu/̃ blj/algorithmic composition/algorithmicmodel.html>.

[3] Jacob, Bruce. ”VARIATIONS: Algorithmic Compositions for
Acoustic Instruments.” University of Maryland. 20 Jan. 2009
<http://www.ece.umd.edu/̃ blj/algorithmic composition/>.

[4] Kostka, Stefan and Payne, Dorothy (1996). Tonal Harmony: With An In-
troduction To Twentieth Century Music. 3rd ed. McGraw-Hill, Inc.: San
Francisco.

[5] Kunze, Tobias. ”Algorithmic Composition Bibliography”.
1998. Stanford University. 16 Jan. 2009 <http://ccrma-
www.stanford.edu/̃ tkunze/res/algobib.html>.

[6] Maurer, John A. ”A Brief History of Algorithmic Com-
position”. March 1999. Stanford University. 19 Jan. 2009
<http://ccrma.stanford.edu/̃ blackrse/algorithm.html>.

[7] ”Microsoft Research Songsmith”. 2009. Microsoft Corpo-
ration. 22 Jan. 2009 <http://research.microsoft.com/en-
us/um/redmond/projects/songsmith/>.

13

