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Abstract

This goal of this project is to create an effective machine bidder in the card game of 
bridge.  Factors like partial information and the multiplicity of the meanings of bids make this 
task difficult.  My plan to overcome these problems is to use a Monte Carlo sampling method for 
overcoming the limitation of partial information and to use a tree structure of constraints to store 
the bidding system used by a partnership.  Then a machine partnership can train by continually 
swapping their new bidding inclinations in order to learn new decision networks.  The results of 
this project will not only demonstrate the feasibility of having a machine learn to bid in this 
manner  but  also  the  machine  partnerships  may  develop  new bidding  conventions  useful  to 
human bridge players.

Introduction

Games  such  as  bridge  are  frequently  used  as  test  of  and  a  medium  for  developing 
intelligent decision-making algorithms.  So far the bidding phase of a bridge hand as proved to 
be very difficult for machines to perform well for several reasons.  Unlike many other games, 
bridge involves interactions with both cooperative and opponent agents.  Also, only part of the 
total  information is available to each agent while bidding, making it difficult  to evaluate the 
effectiveness of given bid until the entire bidding sequence is complete.  Perhaps the greatest 
challenge of all is that bids made by human players usually have more than one meaning.  Bids 
often times suggest contracts to play, but just as often are made to provide the bidder’s partner 
with more information about the bidder’s hand.  Sometimes they even direct the bidder’s partner 
about what to do while defending.  Because of the limited amount of information available to 
each bidder it can be difficult to determine which of the meanings was intended, or if multiple 
where intended.  The limited information even makes it hard to decide what information would 
be most useful to give to one’s partner about their hand.  All these issues would seem to indicate 
that  machine  bridge bidding requires  a  very different  category of  solution from solutions  to 
problems in other games.

The goal of this project is to create a machine bidding agent as skilled as possible.  This 
will be done using a flexible bidding system framework that can evolve through co-training over 
the course of many hands.  The important developmental points in this project will be designing 
this framework or choosing from among those already designed, choosing an effective method to 
overcome  partial  information,  and  finding  an  effective  way  for  partnerships  to  continually 
exchange information about their  bidding tendencies so that they might  improve through co-
training.   Progress  will  be measured  using  the  average  change in  IMPs scored  per  hand in 
simulated team matches.  This project will not deal with the playing phase of a hand beyond 
what is required to evaluate the performance of bidding agents.

Background



Prior research in this  area has indicated that  the Monte Carlo sampling method is  an 
effective way to overcome the limitation in bridge of partial information (Amit and Markovitch). 
Using this method a bidder would generate a random sample of many hands that satisfy the 
constraints already placed upon each hand by the bidding and the known thirteen cards that must 
lie  within  the  bidder’s  hand.   Actions  are  evaluated  based  on  these  sample  hands. 
Probabilistically,  the  bidder  is  evaluating  based  on  what  are  close  to  the  actual  percentage 
chances of the scenario lying that way, so this method effectively allows the machine bidder to 
“imagine” the results of their actions based on the expected card distribution.

Double-dummy solving is generally considered to be a solved problem at the current state 
of the art in machine bridge bidding.  Many techniques are known to be very effective in solving 
within large search trees within little time.  The hash table, quick trick checking, and single suit 
analysis methods optimizations are at this point known to be helpful in solving quickly (Chang). 
These and other improvements are being adopted for the requisite double-dummy solver in this 
project in order to be able to measure the improvements in machine bidding agents at a more 
reasonable pace.

Development

The development of a fast double-dummy solver was the first step taken in this project. 
This tool is necessary for evaluating the performance of bidding agents.

The algorithm used to count the number of tricks available in a contract is based on the 
standard minimax algorithm.  The algorithm is given the remaining cards of the hand that must 
play next, the cards that have been played so far in the current trick, a goal trick count to reach, 
and the number of tricks taken so far.  It will recursively call itself with many different cards 
from its hand having been played each time.  The algorithm is initialized first with the goal 
number of tricks being 7, and subsequent calls are made that shift the goal to the midpoint of the 
range that is known to contain the goal.

If the algorithm is run on a hand position in which the opponents have taken too many 
tricks to allow the declarer to reach the goal, the algorithm returns to its caller that the goal 
number of tricks cannot be reached from the hand position.  If the algorithm is run on a hand 
position in which the declarer has already reached his goal number of tricks the algorithm returns 
to its caller that the goal number of tricks can be reached from the hand position.  If a defender 
sees  just  one  position  in  which  the  declarer  cannot  make  the  goal  number  of  tricks,  he 
prematurely returns that the goal cannot be reached.  If the declarer or his partners see a position 
in which they can reach the goal number of tricks, they prematurely return this result.

This algorithm runs far too slowly to be able to evaluate a thirteen-trick hand, so many 
improvements and optimizations were made in order to facilitate this.  The first optimization 
introduced was the use of a hash table.  This hash table stores hand positions as keys and maps 
them to  the  known upper  and lower  bounds of  tricks  that  the  declarer  can  make  from that 
position.   This prevents positions  that  can be reached by many lines of play from being re-



evaluated, which saves a very significant amount of time.  It also in some cases prevents re-
evaluation of positions when the algorithm is initiated with a different goal value.

The  hash  table  improves  speed  significantly,  but  quickly  depletes  memory  when 
evaluating a full thirteen-trick hand.  The most memory-consuming part of an entry was the hand 
position, so finding a way to generate a unique numerical value for each hand to store in the hash 
table  vastly  reduces  the  memory  cost  per  entry.   An even  better  method  would  be  to  take 
advantage  of  this  value  to  cause  hands  that  will  have  the  same  trick  result  to  have  a  hash 
collision, making the second one adopt the trick score of the first without even evaluating it.  The 
solution implemented uses a character array.  The first four bytes hold the locations of the top 
four cards from each suit.  Each pair of two bits holds the number of the player that holds the 
corresponding card.  The next eight bytes hold the lengths of the suits of each player, using each 
set  of four consecutive bits to hold the suit  length for the corresponding player  (although in 
almost every case only three bits are needed).  The last byte contains the player who must play 
the next card.  This character array is then converted into an integer by using the hash code 
function  of  strings.   This  function  does  permit  some  collisions  but  is  erratic  enough  in  its 
distribution of values across the hash table that it is impossible for two hands with the same 
associated  value  to  be  transformed  into  each  other  by  any  legal  line  of  play,  so  unwanted 
collisions never occur anyway.

Another useful optimization reduces the average branching factor of the enormous search 
tree.  A card play is not tried if another equal card has already been checked.  An example of this 
would be if a player has both the jack and queen of diamonds; only one needs to be checked 
because the cards are for all intents and purposes equal-valued.  Another example would be if a 
player had both the ten and the queen of diamonds and the jack had already been played.  A 
similar optimization is only checking cards that can beat the current winning card for the trick 
and the lowest play option available.  This has the effect of preventing a player from losing to a 
trick unnecessarily high.  For instance, if the seven of hearts is lead, the next player need only 
check the cards above the seven and his lowest card.

In very simple but effective searching optimization is to search in a breadth-first manner 
when the declarer is only one trick away from either reaching or failing to reach is contract.  This 
breadth-first searching is done with each player only checking the highest card they can play in 
each suit.  Searching in this manner reduces the average search time by a factor of two, because 
it prevents the computer searching for an elaborate line of play to defeat a contract by more 
tricks in the future when there is a simple line of play to defeat it immediately.

The final optimization used to speed up the process of double-dummy solving is ordering 
card choices according to the likelihood that they will benefit the player.  This allows me to give 
the computer simple bridge rules that I have learned are usually correct in my own experience 
with the game to try first.  These help search times by more frequently forcing cutoffs of the 
search at nodes prematurely by finding a line of play that either reaches the goal number of tricks 
or prevents reaching it, depending on the player that must play next.  It is not necessary that these 
rules be correct in every situation because the computer will continue on with the search at these 
nodes if such a line is not found.  Examples of these principles include covering the opposing 



team’s honors with your own, playing low to a trick if you can’t beat your partner’s card, and if 
playing last to a trick take it with the minimum possible card.

Performance Analysis

My program has been tested by running it many times to obtain an average time for 
analysis  after each adjustment to the code.  Testing for correctness has been done by having 
skilled bridge players examine the hand until they have figured out the answers.  This is very 
time consuming but is the only way to know for sure whether or not the program is correct.  A 
program that was more frequently correct was always judged to be superior to a program that 
was faster.

Here is output data from a sample run of the double-dummy solving program.  These 
values are correct and the solving process took approximately 2 seconds overall:

North:
Clubs: T 7 5 3 2
Diamonds: J
Hearts: A Q J T
Spades: T 9 7

West: East:
Clubs: 6 Clubs: A J 8
Diamonds: A K T 7 5 Diamonds: Q 9 8
Hearts: 9 8 4 Hearts: 5 3
Spades: Q J 6 2 Spades: A K 8 5 4

South:
Clubs: K Q 9 4
Diamonds: 6 4 3 2
Hearts: K 7 6 2
Spades: 3

Trick Counts for Each Declarer (North, South, East, West):
Clubs: 9 9 3 3
Diamonds: 2 2 11 11
Hearts: 7 7 3 3
Spades: 0 0 11 11
No Trump: 2 2 8 8

Results

Currently no bidding agents have been implemented and so there are no results to report 
yet.  However, once machine partnerships are able to co-train the double-dummy solving tool 
that has been completed will be able to compute the progress of the partnership.
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Appendix A: Rules of Bridge

Like chess, the card game bridge is exceptionally difficult to learn, although the rules are 
simple.  The game uses a standard deck of playing cards, with an equal number of cards dealt 
randomly to each player.   Bridge must be played with exactly four players; neither more nor 
fewer players are permissible.  Each player is partnered with the player across from them and 
opponents with the other two players.  A hand of bridge is played in two phases: the bidding and 
the  playing.   When  playing  the  game  bidding  comes  first,  but  it  is  necessary  to  have  an 
understanding of the play before attempting to understand bidding.

The play consists of thirteen tricks, where each trick is a grouping of one card from each 
player.  A trick commences with one player leading any card in their hand.  Each subsequent 
player going around the table clockwise must play a card of the same suit from their hand.  If 
they have no cards of the suit that was lead, they may play any card they wish.  The player that 
wins the trick is the one who plays the highest card of the suit that was lead for the trick.  There 
is also may or may not be a trump suit.  If there is, the highest trump card played in the trick wins 
irrespective of whether trump was the lead suit or not.  The player who leads for the next trick is 
the winner of the previous trick.

In the bidding each partnership must decide which trump suit it wishes to play in and how 
many tricks they think they can win between the two of them.  The first person to bid is the 
dealer, and the bid moves clockwise around the table.  On your turn you may bid a contract, pass, 
double, or redouble.  A contract consists of a number and either a suit or no-trump.  If a contract 
is bid it must be higher than all previous contracts.  A contract  is defined to be higher than 
another contract if either its number is higher or the numbers are equal and its suit is higher.  The 
order of suits from lowest to highest is clubs, diamonds, hearts, spades, and lastly,  no-trump. 
The suit represents what you wish to be the trump suit, and the number is the number of tricks 
the player thinks that him and his partner can take together minus six.  The minimum bid is one, 
corresponding to seven tricks, and the maximum bid is seven, corresponding to all thirteen tricks. 
A can only be bid if the previous contract was bid by the opponents.  The double increases the 
number of points the opponents score if they make their contract but increases the number that 
the doubling partnership gets if they fail to make their contract.  A redouble increases these two 
values  even  more.   A  redouble  may  only  be  bid  if  the  previous  contract  was  bid  by  the 
redoubling partnership and the contract has already been doubled.  The bidding sequence ends 
after three consecutive passes, unless the first three bids are passes, in which case the fourth 
player must pass to end the bidding.



If everybody passes both sides receive score zero for the hand.  Otherwise the partnership 
that made the last contract must play the hand and take that many tricks.  The first person of that 
partnership to have bid the suit that ended up as trump is called the declarer.  Their partner is 
called the dummy.  The person to the left of the declarer leads for the first trick.  Immediately 
following this  lead the dummy lays  down all  their  cards so that everybody can see, and the 
declarer plays both hands attempting to take as many tricks as he bid.


