
Machine Learning of Bridge Bidding

Dan Emmons

April 1, 2009

Abstract

The goal of this project is to create an effective machine bidder in the card
game of bridge. Factors like partial information and the multiplicity of the
meanings of bids make this task difficult. This research proposes to overcome
these problems with the use of Monte Carlo sampling method for overcoming
the limitation of partial information and a tree structure of constraints paired
with sets of actions to store the bidding system used by a partnership. With
this tree structure a machine partnership trains by continually swapping their
new bidding inclinations to learn new decision networks. The performance
of bidders is evaluated by having them play against a control pair in both
directions for each hand and converting the results to an average IMP gain
per hand. The results of this project will not only demonstrate the feasibility
of having a machine learn to bid in this manner, but also may develop new
bidding conventions useful to human bridge players.

Contents

1 Introduction 3

2 Background 3

3 Development 4
3.1 Double-Dummy Solver Implementation 4

3.1.1 Algorithm Overview . 4
3.1.2 Improvements on MTD(f) . 5
3.1.3 Game Tree Pruning Techniques 6

3.2 Structure of Bidding Hierarchy . 7

1

3.3 Bidding Algorithm . 7

4 Performance Analysis 9
4.1 Double Dummy Solver Tests . 9
4.2 Bidding Agent Tests . 10

5 Results 10

6 References 13

A Rules of Bridge 14

B Standard IMP Scoring Method 15

2

1 Introduction

Games such as bridge are frequently used
as test of and a medium for developing in-
telligent decision-making algorithms. So
far the bidding phase of a bridge hand as
proved to be very difficult for machines to
perform well for several reasons. Unlike
many other games, bridge involves inter-
actions with both cooperative and oppo-
nent agents. Also, only part of the to-
tal information is available to each agent
while bidding, making it difficult to eval-
uate the effectiveness of given bid until
the entire bidding sequence is complete.
Perhaps the greatest challenge of all is
that bids made by human players usually
have more than one meaning. Bids often
times suggest contracts to play, but just
as often are made to provide the bidder’s
partner with more information about the
bidder’s hand. Sometimes they even di-
rect the bidder’s partner about what to
do while defending. Because of the lim-
ited amount of information available to
each bidder it can be difficult to deter-
mine which of the meanings was intended,
or if multiple where intended. The lim-
ited information even makes it hard to
decide what information would be most
useful to give to one’s partner about their
hand (Graff). All these issues would seem
to indicate that machine bridge bidding
requires a very different category of solu-
tion from solutions to problems in other
games.

The goal of this project is to create a

machine bidding agent as skilled as pos-
sible. This will be done using a flexi-
ble bidding system framework that can
evolve through co-training over the course
of many hands. The important develop-
mental points in this project will be de-
signing this framework or choosing from
among those already designed, choosing
an effective method to overcome partial
information, and finding an effective way
for partnerships to continually exchange
information about their bidding tenden-
cies so that they might improve through
co-training. Progress will be measured
using the average change in IMPs scored
per hand in simulated team matches. This
project will not deal with the playing phase
of a hand beyond what is required to eval-
uate the performance of bidding agents.

2 Background

Bridge bidding is far from being a solved
problem. Exceptional bridge playing pro-
grams at best earn an average negative
one IMP gain against experts, less than
the average gain for skilled human players
against experts. Compared to the aver-
age IMP gain of novices against experts
of about negative two IMPs, this figure
is not terrible, but it still indicates that
the current state of the art in this subject
has much room for improvement (Gins-
berg). However, a few techniques have
been shown to be more successful than
others, and those techniques are the com-
pounded to form the bidding system this

3

project sets forth.

A great many computer bridge systems
have adopted a Monte Carlo sampling method
to overcome the limitation of partial in-
formation (Amit and Markovitch, Gins-
berg). Using this method a bidder would
generate a random sample of many hands
that satisfy the constraints already placed
upon each hand by the bidding and the
known thirteen cards that must lie within
the bidder’s hand. Actions are evaluated
based on these sample hands. Probabilis-
tically, the bidder is evaluating based on
what are close to the actual percentage
chances of the scenario lying that way,
so this method effectively allows the ma-
chine bidder to “imagine” the results of
their actions based on the expected card
distribution (Ando et all).

Double-dummy solving is generally con-
sidered to be a solved problem at the cur-
rent state of the art in machine bridge
bidding. Many techniques are known to
be very effective in solving within large
search trees within little time. The hash
table, quick trick checking, and single suit
analysis methods optimizations are at this
point known to be helpful in solving quickly
(Chang). These and other improvements
have been adopted for the requisite double-
dummy solver in this project in order to
be able to measure the improvements in
machine bidding agents at a more reason-
able pace.

3 Development

3.1 Double-Dummy Solver Im-
plementation

The development of a fast double-dummy
solver was the first step taken in this project.
This tool is necessary for two purposes.
The first is evaluating the performance of
bidding agents at the completion of an
auction, and the second is for the bid-
ders to analyze the final state of an auc-
tion and determine that states utility for
themself.

3.1.1 Algorithm Overview

The algorithm used to count the number
of tricks available in a contract is based on
the standard mtd(f) algorithm, a type of
adverserial search used to improve upon
the minimax algorithm with alpha-beta
pruning. The algorithm is given the re-
maining cards of the hand, the cards that
have been played so far in the current
trick, a goal trick count to reach, and the
number of tricks taken so far. It will re-
cursively call itself with many different
cards from its hand having been played
each time. The algorithm is initialized
first with the goal number of tricks be-
ing 7, and subsequent calls are made that
shift the goal to the midpoint of the range
that is known to contain the goal.

If the algorithm is run on a hand posi-
tion in which the opponents have taken

4

too many tricks to allow the declarer to
reach the goal, the algorithm returns to
its caller that the goal number of tricks
cannot be reached from the hand posi-
tion. If the algorithm is run on a hand
position in which the declarer has already
reached his goal number of tricks the al-
gorithm returns to its caller that the goal
number of tricks can be reached from the
hand position. If a defender sees just
one position in which the declarer can-
not make the goal number of tricks, he
prematurely returns that the goal cannot
be reached. If the declarer or his partners
see a position in which they can reach the
goal number of tricks, they prematurely
return this result. This ability to easily
form alpha-beta cutoffs due to the zero-
window search of the algorithm is what
gives it its speed gain.

3.1.2 Improvements on MTD(f)

This algorithm runs far too slowly to be
able to evaluate a thirteen-trick hand, so
many improvements and optimizations were
made in order to facilitate this. The first
optimization introduced was the use of a
hash table. This hash table stores hand
positions as keys and maps them to the
known upper and lower bounds of tricks
that the declarer can make from that po-
sition. This prevents positions that can
be reached by many lines of play from be-
ing re-evaluated, which saves a very sig-
nificant amount of time. It also in some
cases prevents re-evaluation of positions

when the algorithm is initiated with a dif-
ferent goal value.

The hash table improves speed significantly,
but quickly depletes memory when evalu-
ating a full thirteen-trick hand. The most
memory-consuming part of an entry is the
hand position, so finding a way to gen-
erate a unique numerical value for each
hand to store in the hash table vastly
reduces the memory cost per entry. An
even better method is to take advantage
of this value so that hands that will have
the same trick result have a hash colli-
sion, making the second one adopt the
trick score of the first without even evalu-
ating it. The solution implemented uses a
character array. The first four bytes hold
the locations of the top four cards from
each suit. Each pair of two bits holds the
number of the player that holds the corre-
sponding card. The next eight bytes hold
the lengths of the suits of each player, us-
ing each set of four consecutive bits to
hold the suit length for the corresponding
player (although in almost every case only
three bits are needed). The last byte con-
tains the player who must play the next
card. This character array is then con-
verted into an integer by using the hash
code function of strings. This function
does permit some collisions but is erratic
enough in its distribution of values across
the hash table that it is impossible for two
hands with the same associated value to
be transformed into each other by any le-
gal line of play, so unwanted collisions will
never occur regardless.

5

In very simple but effective searching op-
timization is to search in a breadth-first
manner when the declarer is only one trick
away from either reaching or failing to
reach is contract. This breadth-first search-
ing is done with each player only checking
the highest card they can play in each
suit. Searching in this manner reduces
the average search time by a factor of two,
because it prevents the computer search-
ing for an elaborate line of play to defeat
a contract by more tricks in the future
when there is a simple line of play to de-
feat it immediately.

The final optimization used to speed up
the process of double-dummy solving is
ordering card choices according to the like-
lihood that they will benefit the player.
This allows an experienced developer to
give the computer simple bridge rules he
or she knows to be usually correct in his
or her own experience with the game. These
help search times by more frequently forc-
ing cutoffs of the search prematurely by
finding a line of play that either reaches
the goal number of tricks or prevents reach-
ing it, depending on the player that must
play next. It is not necessary that these
rules be correct in every situation because
the computer will continue on with the
search at these nodes if such a line is not
found. Examples of these principles in-
clude covering the opposing team’s hon-
ors with your own, playing low to a trick
if you can’t beat your partner’s card, and
if playing last to a trick take it with the
minimum possible card.

3.1.3 Game Tree Pruning Techniques

When compounded with the above tech-
niques, pruning the search tree dramat-
ically reduces evaluation time by reduc-
ing the average branching factor of the
search tree. Great care must be taken
in this excercise not to prune nodes that
can change the minimax value returned
by the search. This is a tricky excercise in
the game of bridge because unusual and
counter-intuitive plays frequently gener-
ate the best results. For this reason, only
two pruning techniques are used, both be-
ing very safe in regard to their ability to
change the end trick score.

The first of these techniques is that a card
play is not tried if another equal card has
already been checked. An example of this
would be if a player has both the jack
and queen of diamonds; only one needs to
be checked because the cards are for all
intents and purposes equal-valued. An-
other example would be if a player had
both the ten and the queen of diamonds
and the jack had already been played.
This technique can never change the end
trick value because the moves that it avoid
playing are easily proven to yield exactly
the same result as at least one other move
the player can make.

The other pruning technique is only check-
ing cards that either can beat the current
winning card for the trick or are the low-
est play option available. This technique
cannot be applied to the choices a player
has available when they must lead, but

6

in all other scenarios this has the effect of
preventing a player from losing to a trick
with an unnecessarily high card. For in-
stance, if the seven of hearts is lead, the
next player need only check the hearts
above the seven and his lowest heart that
he or she is holding for his or her next
play. This technique, as counter-intuitive
as it may seem, is actually capable of
changing the end trick score in rarely-
occuring situations where transportation
is a key factor. However, by playing cards
in the proper order this change can al-
most always be avoided, making this op-
timization so near to perfect that it is
still advantageous to use it anyway for the
large corresponding speed gain.

3.2 Structure of Bidding Hi-
erarchy

The bidding hierarchy exists for two pur-
poses. The first is to examine the a hand
and the bidding history and determine
which bids should be examined as pos-
sibilities for that agent to choose. The
other purpose is exactly the reverse; it is
used to examine a bid and the bidding
history and determine what must be true
of the hand of the bidder in order to make
that bid.

The bidding hierarchy is implemented as
a tree. Each node of the tree contains
three things: a set of constraints, a set
of actions, and a set of pointers to other
nodes. The root node contains no con-

Figure 1: Bid Decision Hierarchy

straints and all actions. When a search is
made, the search begins at the root node
and propogates down every pointer where
the constraints of the target node are met
by the hand. There are many priorities of
pointers, and propogation down each suc-
cessively lower priority can only occur at
nodes where there is no propogation down
any higher priorities. To find possible ac-
tions given a hand, the union of the sets of
actions of the bottom-most nodes reached
is taken. To find constraints given a bid,
propogation occurs down all pointers and
sets of constraints that could lead to nodes
with that action are derived. Figure one
shows an implementation of this hierar-
chy.

3.3 Bidding Algorithm

It is vital to the success of the bidders
that they be able to use two types of rea-
soning in their bidding. The first type is
the ability to use some set of bidding con-
ventions to form their own communica-
tive language. This is crucial because it

7

allows the agent to form more accuracte
pictures of the hands of both its partner
and other agents, letting it zero in on the
contract that should be played. The sec-
ond type of reasoning needs to be a sub-
stitute for common sense. This is crucial
because it will enable the bidding agent
to make tough calls when multiple con-
ventions apply or no conventions apply,
place the final contract, figure out when
to double its opponents, and know when
to make deceitful bids. The algorithm
outlined in this project handles both of
these types of reasoning to help the ma-
chine agents to bid to their fullest poten-
tial.

When an agent is asked for its bid, it be-
gins by querying the bidding hierarchy
to find all of its available bids. Other
bids are not even considered because they
would slow the search a great deal and
they are nearly always worthless. The
agent then examines all the constraints
on the hands of other bidders so far due
to the bidding, and generates a large pool
of hands that fix its own cards. Each type
of constraint has a function that examines
a hand and returns a value representing
how well that constraint is matched. The
lowest value is zero for a perfect match,
and the highest value differs by constraint.
For each deal in the pool a linear combi-
nation sum of all the evaluations of these
functions is computed, and the deals with
the lowest such values are used as a repre-
sentative sample of how the other hands
will lie. The weights of the linear combi-
nation are one for constraints imposed by

the opponents and two for the constraints
imposed by the cooperative agent.

The reason for finding a representative
sample of hands in this manner is three-
fold. First, it is possible that a strange se-
quence has occured that over-constrains
the hand. In this case the agent does not
want to spend forever looking for hands
that match the bidding because none ex-
ist; this algorithm will simply yield a va-
riety of close solutions. The second rea-
son is that opponents may occasionally
attempt to deceive the bidder by making
false bids that will cause the opponent to
grossly missrepresent the hand. With this
algorithm the linear combination weights
the constraints imposed by opponents less
heavily than those imposed by the coop-
erative agent, who is presumably trying
to bring to light the truth to the bidder
in these situations. The final reason is
that generating only hands that satisfy
all the constraints, assuming such a set
of hands exists, will typically change the
expected values of attributes of the hands
unrelated to the constraints, creating an
unrepresentative sample. By generating
generic hands and only taking the ones
that match the scenario this algorithm
avoids that pitfall and creates a sample
with probability distributions that are sim-
ilar to the corrent distributions.

Once the bids and samples are obtained,
a lookahead is performed in the auction
is performed for each sample assuming
the hands of everybody to be the same
as in the sample. The lookahead is per-

8

formed using a probabilistic minimax al-
gorithm. Alpha-beta pruning cannot be
used in this instance of the minimax search
because it is crucial to evaluate all branchs
of the tree to get a representative sam-
pling of how hands will likely appear; in
other words, the search must return not
just the best score, but must return all
an expected value that is computed by
multiplying all scores by a probability es-
timate for that score. When the termi-
nal nodes are reached that signify the end
of the auction, the value returned is the
score earned for the declarer. When the
bidder has performed this lookahead for
each bid and sample pair, the value as-
signed to each bid is the average of the
values obtained from searching all the sam-
ples after making that bid. The bid with
the highest value is selected. This effec-
tively serves the reasoning function that
serves as a replacement for common sense,
while the bidding hierarchy performs the
function of the conventional reasoning that
allows partners to communicate.

While this approach is tremendously pow-
erful, it has one downside, the significance
of which is yet to be determined. This
method causes all players to play more
conservatively than they otherwise might,
which is sometimes a virtue but some-
times a hindrance. The reason for this
is that as part of the nature of the looka-
head algorithm used, the agent assumes
that all other agents can see its cards.
This assumption is highely unrealistic and
causes the agent to handle competitive
auctions diffirently than it otherwise would,

because it assumes it will be doubled for
every contract that it bids that does not
make. One method to avoid this problem
is to generate a new set of samples at ev-
ery step in the lookahead, but this is far
more time consuming. Because the most
costly operation is double-dummy solving
contracts by several orders of magnitude,
the former implementation completes the
task in approximately O(1) time and the
later in O(an) time, where a is the num-
ber of samples generated per step for the
later implementation and n is the depth
of the look-ahead in the auction. A solu-
tion that has neither drawback has been
sought for but not yet found.

4 Performance Analysis

4.1 Double Dummy Solver Tests

The double dummy solver has been tested
by running it many times to obtain an av-
erage time for analysis after each adjust-
ment to the code. Testing for correctness
has been done by having skilled bridge
players examine the hand until they have
figured out the answers. This is very time
consuming but is the only way to know for
sure whether or not the program is cor-
rect. A program that was more frequently
correct was always judged to be superior
to a program that was faster.

Here is output data from a sample run of
the double-dummy solving program. The
values that it displays are correct. There

9

are twenty output tricks scores, correspond-
ing to the five different trump suits avail-
able (the fifth suit being the lack of trump)
and the four possible declarers for each
trump selection. The solving process took
approximately one second overall in order
to solve for all cases:

North:

Clubs: T 7 5 3 2

Diamonds: J

Hearts: A Q J T

Spades: T 9 7

West: East:

Clubs: 6 Clubs: A J 8

Diamonds: A K T 7 5 Diamonds: Q 9 8

Hearts: 9 8 4 Hearts: 5 3

Spades: Q J 6 2 Spades: A K 8 5 4

South:

Clubs: K Q 9 4

Diamonds: 6 4 3 2

Hearts: K 7 6 2

Spades: 3

Trick Counts by Declarer:

(North, South, East, West)

Clubs: 9 9 3 3

Diamonds: 2 2 11 11

Hearts: 7 7 3 3

Spades: 0 0 11 11

No Trump: 2 2 8 8

4.2 Bidding Agent Tests

Because of the initial lack of sophisticated
agents for the bidding agents of this project
to compete with in tests, the agents in
their current rendition were tested against
opponents that randomly choose among
any of their valid bids. The victory for
the reasoning agents was dramatic, as ex-
pected. Even with a completely empty
bidding hierarchy, leaving the agents en-

tirely up to their own reasoning capac-
ity and making inferences about the hand
of their partner exceedingly difficult, the
agents earned an average IMP gain per
hand of approximately twenty-one IMPs.
The statistic was measured over eight deals.
This conclusively shows that the reason-
ing abilities of the agents in this version
is effective in some capacity, although it
is difficult to accurately state the magni-
tude of this effectiveness because of the
huge gap in skill between the reasoning
agents and their opponents.

5 Results

The implemented bidding agents have per-
formed spectacularly against random bid-
ders, proving that the presented reason-
ing algorithm improves the quality of bid-
ding. However, the bidding hierarchy used
by the agents during this test contained
only a root node that listed all actions
as available, so the agents were not able
to constrain each other’s hands in any
way other than assuming that the prior
bids they had made where the correct ex-
pected value bids. Even with this huge
detriment of not understanding each the
bids of the cooperative bidding agent, the
presented algorithm still managed to rea-
son its way to a sizeable victory. With
such a bidding tree consisting of just the
root node, this algorithm frequently stum-
bles its way into the proper contract, some-
times get spectacularly lucky and some-
times performing at shamefully-low level.

10

One average it performs reasonably, but
the auctions that it bids are always awk-
ward, as in this deal where South gets
rather lucky:

Dealer: West

Vulnerable: None

North

Clubs: A K 7 6

Diamonds: J T 8 4

Hearts: Q T 8 3

Spades: 2

West East

Clubs: 9 8 5 4 Clubs: J 2

Diamonds: 9 7 6 Diamonds: A Q 2

Hearts: J 2 Hearts: A K 9 7 6 4

Spades: 8 7 6 3 Spades: K 9

South

Clubs: Q T 3

Diamonds: K 5 3

Hearts: 5

Spades: A Q J T 5 4

South West North East

Pass Pass Pass

2S Pass 3H Pass

3S X 4C Pass

4S Pass 4NT Pass

5C Pass 5H Pass

5S X Pass Pass

Pass

5SX Nonvul - South

Making Exact

Score: 650

However, with the addition of some of
the commonly used bidding conventions
to the bidding tree, the program performs
in a much more reliable manner. The
mean score obtained by the program is
increased dramatically, and the standard
deviation is significantly reduced. The
ability to make inferences about the other
hands at the table based on these con-
ventional bids is clearly valuable to the

program. Here is a sample hand were the
program gets a result of roughly the same
magnitude as before, but in this case it is
quite evident to those who know about
bridge bidding that the bidding agents
are extremely skillful.

Dealer: West

Vulnerable: E-W

North

Clubs: Q J 8 4 3

Diamonds: K T 4

Hearts: K J 9

Spades: K 7

West East

Clubs: T 6 2 Clubs: 5

Diamonds: A 5 3 2 Diamonds: 9 8 7 6

Hearts: 8 6 2 Hearts: Q 5 3

Spades: Q 6 2 Spades: A J 9 4 3

South

Clubs: A K 9 7

Diamonds: Q J

Hearts: A T 7 4

Spades: T 8 5

South West North East

Pass 1D Pass

1H Pass 2C Pass

3NT Pass 4C Pass

4H Pass Pass Pass

4H Nonvul - South

Making Exact

Score: 420

Nearly all human players would not be
able to match this result on this hand,
as it is generally a bad idea to play with
a trump suit where the partnership holds
fewer than eight cards. However, the pro-
gram gathered enough information to con-
clude that it was more likely that the part-
nership would have no spade stopper than
it was that they would loss many tricks
for playing in a short trump fit, and made

11

the unorthodox choice of four hearts as
its contract, which yields the best result
possible against opponents of any reason-
able skill level. In short, by using com-
mon bidding conventions the agents can
perform at a very high level. The future
addition of more such conventions would
be a simple way to improve the agent’s
bidding quality further. A further step
beyond that would be for the agent’s to
have the capability to train together to in-
ductively produce their own conventions,
automating this process and potentially
yielding interesting conventions for use by
human bridge players.

12

6 References

Amit, A., and Markovitch, S. (n.d.). Learning to Bid in Bridge. Retrieved October
21, 2008 from http://citeseerx.ist.psu.edu/viewdoc/

Ando, Takahisa; Sekiya, Yoshiyuki; and Uehara, Takao. (1998, October). Partner-
ship Bidding for Computer Bridge. Retrieved November 21, 2008 from http://portal.acm.org.mutex.gmu.edu/

Chang, M. (1996, August 1). Building a Fast Double-Dummy Bridge Solver. Re-
trieved September 29, 2008 from http://citeseerx.ist.psu.edu/viewdoc/

Ginsberg, Matthew L. (n.d.). GIB: Steps towards an Expert-Level Bridge-Playing
Program. Retrieved January 22, 2009 from http://citeseerx.ist.psu.edu/viewdoc/

Graff, Mark. (n.d.) KIBITZ: The Design of a Bridge-Bidding Program Utilizing Sim-
ulated Human Judgement. Retrieved December 20, 2008 from http://portal.acm.org.mutex.gmu.edu/

13

A Rules of Bridge

The card game bridge is exceptionally dif-
ficult to learn, although the rules are sim-
ple. The game uses a standard deck of
playing cards, with an equal number of
cards dealt randomly to each player. Bridge
must be played with exactly four players;
neither more nor fewer players are per-
missible. Each player is partnered with
the player across from them and oppo-
nents with the other two players. A hand
of bridge is played in two phases: the bid-
ding and the playing. When playing the
game bidding comes first, but it is neces-
sary to have an understanding of the play
before attempting to understand bidding.

The play consists of thirteen tricks, where
each trick is a grouping of one card from
each player. A trick commences with one
player leading any card in their hand. Each
subsequent player going around the table
clockwise must play a card of the same
suit from their hand. If they have no
cards of the suit that was lead, they may
play any card they wish. The player that
wins the trick is the one who plays the
highest card of the suit that was lead for
the trick. There is also may or may not
be a trump suit. If there is, the highest
trump card played in the trick wins irre-
spective of whether trump was the lead
suit or not. The player who leads for the
next trick is the winner of the previous
trick.

In the bidding, sometimes referred to as
the auction, each partnership must decide

which trump suit it wishes to play in and
how many tricks they think they can win
between the two of them. The first per-
son to bid is the dealer, and the bid moves
clockwise around the table. On your turn
you may bid a contract, pass, double, or
redouble. A contract consists of a num-
ber and either a suit or no-trump. If a
contract is bid it must be higher than all
previous contracts. A contract is defined
to be higher than another contract if ei-
ther its number is higher or the numbers
are equal and its suit is higher. The order
of suits from lowest to highest is clubs,
diamonds, hearts, spades, and lastly, no-
trump. The suit represents what you wish
to be the trump suit, and the number
is the number of tricks the player thinks
that him and his partner can take to-
gether minus six. The minimum bid is
one, corresponding to seven tricks, and
the maximum bid is seven, correspond-
ing to all thirteen tricks. A double can
only be bid if the previous contract was
bid by the opponents. The double in-
creases the number of points the oppo-
nents score if they make their contract
but increases the number that the dou-
bling partnership gets if they fail to make
their contract. A redouble increases these
two values even more. A redouble may
only be bid if the previous contract was
bid by the redoubling partnership and the
contract has already been doubled. The
bidding sequence ends after three consec-
utive passes, unless the first three bids
are passes, in which case the fourth player
must pass to end the bidding.

14

If everybody passes both sides receive score
zero for the hand. Otherwise the part-
nership that made the last contract must
play the hand and take that many tricks.
The first person of that partnership to
have bid the suit that ended up as trump
is called the declarer. Their partner is
called the dummy. The other two players
are called the defenders. The person to
the left of the declarer leads for the first
trick. Immediately following this lead the
dummy lays down all their cards so that
everybody can see, and the declarer plays
both hands attempting to take as many
tricks as possible. The defenders try to
prevent this.

There is no penalty for taking more tricks
than were bid; indeed, taking more tricks
will always earn a better score for the de-
clarer. However, in some cases it will re-
duce the declarer’s score to bid too low,
as bonuses can be earned if contracts of
certain levels are bid and made. The de-
clarer’s partner receives the same score as
the declarer. The defenders receive the
negative of the score that the declarer re-
ceives.

B Standard IMP Scor-

ing Method

The method chosen to be used in this
project to evaluate the performance of bid-
ding agents is the standard IMP scoring
method of Swiss teams bridge games. The
reason that this selection was made has to

do with how the agents select their next
bid. They choose the bid that they be-
lieve gives them the best expected score
value. This strategy is well-suited for the
bridge IMP scoring method that favors
trying to make large point gains over a
small set of opponents, but not neces-
sarily advantageous for the matchpoints
scoring method which favors trying to ob-
tain a point score that is only minimally
better than the score of every opponent
from a large set of opponents. Therefore
the IMP scoring method is more repre-
sentative of how well the bidders accom-
plished their aim. On a more practical
note, nearly every computer bridge tour-
nament is scored with the IMP method,
so adopting it in this project allows it to
more easily face competition.

When executed with human players the
IMP method requires eight players rather
than four. The players divide themselves
into two teams of four players, with each
team consisting of two partnerships of two
players. The two partnerships of a team
go to opposite tables to prevent them from
overhearing the events occuring at the other
table. At one table two partnerships from
opposite teams play a deal and record
their score result before passing it to the
table containing the other two partner-
ships. The partnerships of the other table
play the exact same board, ensuring be-
fore they begin that they seat themselves
so as to give each partnership the hands
that the partnership of the opposing team
played at the other table. When they
complete their play they add their score

15

result to the score obtained by the part-
nership of the same team at the other ta-
ble. This sum will be zero if the events of
the hand transpired the same way at the
other table, but deviations almost always
result in one team receiving a positive
sum and the other a negative sum of the
same magnitude. The sum is converted
to an IMP score via a standard lookup
table used by the ACBL which awards
more IMPs for larger sums. This IMP
score effectively removes the luck associ-
ated with the differing strengths of hands
that random dealing provides.

Computers, on the other hand, are capa-
ble of executing this scoring method with
only four bidding agents. For a computer,
obtaining the two scores to be summed
is as trivial as playing a deal, then hav-
ing all players rotate left one seat, then
playing the deal again. This can be done
because the computer player will not re-
member the events of the previous play,
so the players may play again as if the
deal is completely new to them.

In this project I use the average IMP gain
per hand when playing against a control
bidding system as a measure of the skill
of the bidders. Some established values
for this measure exist that allow the bid-
ders to be compared against the strength
of over bidding systems or human bridge
players. For instance, it is known that
experts typically receive an average IMP
gain of two IMPs per hand when playing
against novices and that the standard de-
viation of IMP swings on one board is

typically around five and a half (Gins-
berg).

16

