
A Traffic Simulation Model Allowing For Wide-
ranged Vehicle Communication

Timmy Galvin- TJHSST Computer Systems Lab

Abstract:

Traffic is an ever-growing problem as population
around the world increases exponentially and with
it, the number of drivers. Previously, fluid flow
models have been used in an attempt to model
traffic, but as has been recently discovered, only
agent based models can accurately model a traffic
scenario as small perturbations can have a
butterfly effect and change the entire system.

Introduction:

I want to create an algorithm that responds to traffic backups by
sending information across the system and altering traffic laws to
help such situations. I will develop a method of calculation bad
traffic jams and to what extent the speed limit on the roads
leading up the jam need to be changed. For this to function well, I
need to have an accurate model of driver behavior and an ability
for my program to collect data and analyze the situation well. The
model will be of varying road systems and the vehicles on the
road will have their own properties such as location, speed,
acceleration, speed limit, and aggressiveness, some of which will
be user defined. While the simulation is made in an attempt to
copy human behavior, like all other traffic models in use, it will be
collision-free.

Developments Sections:

The World class that my environment is stored in holds an ArrayList of all
the Vehicles so that it can access their information and location. Using
these values it will be able to detect traffic jams and react to them by
altering conditions. I have set up a basic simulation to do this, at the
moment it is a two-lane system with traffic flowing in two directions moving
at realistic velocity and acceleration and responding to a speed limit and
vehicles around them. There is a variable in the program for traffic density
that can easily be altered to change the number of cars. This program
will be successful if it one, accurately depicts traffic flow by means of a
traffic density versus flow graph, and two, if it can use information from the
entire system to alter traffic laws.

Reaction Algorithm

This is a main component of my program as it determines the braking
speed of the vehicles in relation to the vehicle in front of them. At first I
used a linear model but found it be rather inaccurate, or rather, that with my
micro model, I could use more complicated functions because of small set
sizes and the ability to visually observe the results. Currently it is a
combination of two parabolic functions that vary the speed of the car
behind as a function of its current speed and the speed of the car in front of
it. This will prevent the car behind from ever running up on the car ahead
of it or overrunning it.

Results and Discussion

At the moment my program works in a two-lane traffic simulation.
The only test of its validity that I have used is a visual comparison to
known behavior. The behavior that it depicts is a traffic jam moving
backwards in traffic. With the speed trap I built in, I was able to
discover that it is better to have a speed trap earlier on rather than
later, as traffic will build up on the road with the speed trap later on,
making a slower lane. Hopefully, when my project is fully
implemented I will yield results on how information sharing and
system reaction will affect traffic flow, though I am not sure if it will
be marginable enough to be reasoning behind buying many sensing
systems for actual road systems.

Realistically allowing the user to define environments initially
provides no results to my project because it still lacks the eventual
elements that will separate it from other traffic simulations such as a
2d lane changing and wide-ranged system communication. It is
more steady progress that will eventually peak with a capable traffic
simulation that allows for very extensive user definition.

User Generated Environments

In early versions of my program the environment is
hardcoded into the system, to be drawn and to be reacted
with by the cars. Because this severely limits the extents
to which the program can be applied, I altered it to allow for
users to create their own road systems which could be
loaded into the program. The user would draw road
systems in an imaging editing program such as Gimp and
save it in pgm (ascii) format. This stores the data in a
matrix-like fashion that can be easily read in and stored.
The program reads this data in and scans the edges of the
drawn environment to find roads. When it finds the start
(or end) of a road, it traces it and stores its edge location to
be used in car generation. Some samples user
environment would look something like this:�

Scanning Algorithms

The scanning algorithm searches the edges of the
environment to find the location of the roads. The code for
scanning one edge looks like this:

public ArrayList scantXEdges()
 {
 ArrayList temp = new ArrayList();
 int k=0;
 int ig=0;
 for(int x=50;x<650;x++)
 {
 if(worldmatrix[x][50]==0)
 if(ig==0)
 {
 temp.add(new Integer(x+11));
 ig=1;
 x+=16;
 }
 else
 ig=0;
 }
 return temp;
 }�

I advise that my model be further developed and used as
starting point. Current traffic simulation models are built
upon micro models, a large compilation of them. If my
code can be optimized and a computer network utilized,
my program can be slightly altered to set up a large set
of systems adjacent to one another to depict more than
just a small road system, perhaps even a whole system.�

	Slide 1

