
Exploration of a 3-D World

Zachary R. Greer
TJHSST Computer Systems Lab

Alexandria, Virginia

June 5, 2009

Abstract

The project opens a display which allows the
user to explore a minimal 3-D world using
OpenGL. A grid of spheres are provided as
reference. Mouse input is taken to modify
the direction in which the user is looking,
and keyboard input is taken for movement
across a plane. Movement occurs with
respect to the direction the user is looking
along the xy-plane. Spherical coordinates
are used to achieve this intuitively and easily.

1 Introduction

The main objective of this project in its cur-
rent state is to create a 3-D environment that
can be explored by the user. C was chosen to
implement this because of its speed (Norvig,
Fig. 1) and the OpenGL libraries it of-
fers. Though other languages do offer graph-
ical libraries, none are nearly as fast as C.
C++ was discarded because of its constantly
changing syntax and the author’s unfamiliar-

ity with said syntax. Minimal though the
features in this environment are, the goal is
achieved. The user can move freely about on
a plane, and can look around as she wishes.
Intuitive mouse control and key layout are
used for input.

Perspective and movement are imple-
mented with spherical coordinates. This sys-
tem translates easily to the controls, makes
movement simple, and also describes the line
of sight vector in a simple way for OpenGL
to understand.

There are plans for networking, surface
loading, physics, and a proximity-based chat
system as well.

2 Background

The chat system I plan to use was inspired
by ”Proximity-based chat in a first person
shooter: using a novel voice communication
system for online play”, by Gibbs, Wadley,
and Benda, concerning the chat systems used
in games. Namely, they generally consist of

1



a two way radio systems, which are not very
conducive to the social aspect of the game.
The article suggested instead employing a
proximity-based system of chat, much like we
see in real life. The study they did suggested
that this enhances social, teamwork, and re-
alism aspects of gaming, all extremely impor-
tant in their own right. The plan is to use this
system to attain precisely that effect.

”How computer gamers experience the
game situation: a behavioral study”, by
Clarke and Duimering, has varied suggestions
on the structure of game, including controls,
networking issues, and players’ reactions to
gaming environments, as well as discussing
players’ experience of the game, styles of play,
and frequency of play. The study was done
by interviewing FPS players of different skill
levels about their in-game experience. These
will be important considerations while con-
structing my project, as the users’ experi-
ences should be as realistic and enjoyable as
possible.

OpenGL is employed as the graphical inter-
face. OpenGL is a free, open-source graphics
interface compatible with C, and possesses
powerful 3-D capabilities not seen in other
graphical frontends.

Spherical coordinates are used to track and
display the user’s line of sight. As will be seen
in the Development section, this is the best
way to store and modify this data, for input,
line of sight, and movement reasons.

Figure 1: This is how the program currently
looks.

3 Development

3.1 Current State of Develop-
ment

In this stage, the program allows the user
to explore a 3-D environment with a grid
of reference objects and a floor, which move
dynamically to where the user needs them,
and takes key and mouse input. It displays
fullscreen with realistic lighting and fog, and
recenters the mouse to allow the user to look
anywhere without worrying about screen con-
straints.

3.2 Perspective

The first real issue presented to one trying to
simulate a person exploring an environment is
that of perspective. When the mouse moves
to look around, what should be displayed?
Thankfully, OpenGL handles some of that,

2



in that it will look from one point towards
another point. Still, how do we best repre-
sent this? Rectangular coordinates, the ever-
default of graphing systems, lend themselves
to this conundrum rather poorly, due to the
extreme incapacity in the realm of circles,
which is what turning really is. The king of
3-D circular systems is, of course, the spheri-
cal coordinate system. I use spherical coordi-
nates to determine the direction in which the
player is looking. OpenGL asks for a vector
to the point you want to look at in Carte-
sian coordinates. To achieve this, I store a
phi and a theta for the user, as this is the
most intuitive way to describe how you look
around.

We know the vector in which the player is
looking, and the player’s position. How do
we describe this as a point to which OpenGL
can look at?

With the radius equal to 1, the spherical
format can easily describe a point to look at.
In < x, y, z > format, the point is:

< xv, yv, zv >=< xp+cos(θ)∗cos(φ), yp+sin(θ)∗cos(φ), zp+sin(φ) >
(1)

where < xv, yv, zv > is the position vector of
the point you want to view, and < xp, yp, zp >
is the position vector of the player. One of the
reasons this is so useful is that it translates
easily to the mouse. If the mouse moves right,
increment θ. If it moves left, decrement θ. If
it moves up, decrement φ. Down, increment
φ. The other use of this system is that for
moving, to obtain an < x, y > unit vector
in the direction you want to travel, you just
take < cos(θ), sin(θ) >.

Another upside to this system is that the

Figure 2: Shown is the user’s position in a
sphere, with the relevant angles labeled.

3



entire line of sight vector (and motion vector)
can be described with two variables, which
are quickly modified and also quick to pro-
duce either vector.

3.3 Working with X11

I was presented with a surprising amount
of difficulty over the course of the year try-
ing to use particular parts of the user inter-
face. The first issue was fullscreen display, as
OpenGL needs a connection to the X server,
and that’s not as easy as it sounds. If you ac-
cidentally open too many connections, your
program dies. Once I finally realized what
was happening, I found a way to ensure only
one connection was opened. The next issue
comes with the mouse controlling look direc-
tion. It was simple to remove the mouse from
view, but how do you stop it from hitting
the edge of the screen? It turns out that
there is a command in X11 to move the cursor
(called XWarpPointer), but then it generates
a key movement in OpenGL, indistinguish-
able from the user’s movement

3.4 Extendability

The program is equipped with variable names
that are intuitive, and is commented and or-
ganized in such a way that the program is
easily changed to fit one’s needs. This soft-
ware can be included in a larger program that
causes models one loads to move, and the pro-
gram will display the new situation with no
added code. This program essentially han-
dles all of the graphics problems one would
run into. It is also extremely modular, (at

least as best as C can do) so could be easily
integrated into other applications.

4 Analysis

At the moment, I have very little to analyze
beyond that it works. The end goal of this
project is as a product for users, so it will
then be evaluated in a very similar way to
the interviews done by Clarke and Duimer-
ing, where I will ask users questions encourag-
ing analysis. Intuitiveness of use, appeal, and
bugs/glitches are all things to evaluate based
on. However, with just the viewing working,
all I can evaluate is if the display works as
expected and models the way we view things
in real life, which it does.

5 Results and Conclu-

sions

The project was successful as far as it has
gone. It displays the minimal 3-D world it
has, and allows the user to explore it.

Future goals include networking, surface
loading, a realistic physics system, and a
proximity-based chat system.

Surface loading will allow for actual, recog-
nizable environments for the user to explore.
Combined with a physics system, this will al-
low the user to explore the environment in a
way much resembling real life.

The final component, a chat system, would
allow users to interact over the network in
this virtual world. Furthermore, they would
be able to interact through realistic speech,

4



quieted over a distance, rather than a radio or
text messaging system, which detracts from
the realism in the simulation.

If this is a successful chat system, and users
do indeed find it to enhance socialization,
and I have every reason to believe they will
(Gibbs, Wadley, and Benda), this could be a
major point for others build off of. Anyone
creating a networked environment for users
to interact could employ this system, both
for improved realism and greater social en-
joyment for users.

6 Acknowledgements

I would like to thank Shane Torbert for in-
troducing me to computer science, as well as
teaching me most everything I know about
programming, and I’d like to thank Nick
Starr and Stephen Drodge for teaching me
the rest. I’d also like to thank Randolph La-
timer for his support and flexibility with this
project throughout the year.

References

[1] Clarke, Delwin, and P. Robert Duimer-
ing. “How Computer Gamers Experi-
ence the Game Situation: A Behavioral
Study.” The ACM Digital Library.
2006. 30 Oct. 2008
http://portal.acm.org/citation.cfm?
id=1146816.1146827coll=ACMdl=ACMCFID
=8522235CFTOKEN=30531755.

[2] Gibbs, Martin, Greg Wadley, and Peter
Benda. “Proximity-Based Chat in a

First Person Shooter: Using a Novel
Voice Communication System for On-
line Play.” The ACM Digital Library.
2006. 30 Oct. 2008
http://portal.acm.org/citation.cfm?
id=1231894.1231909coll=ACMdl=ACMCFID
=8522235CFTOKEN=30531755.

[3] Norvig, Peter. “Python for Lisp Pro-
grammers.” Norvig.Com. 30 Oct. 2008
http://norvig.com/python-lisp.html.

[4] Angel, Ed, David Shreiner, and Vicki
Shreiner. “An Interactive Introduc-
tion to OpenGL Programming.”
The ACM Digital Library. 2007. 21
Jan. 2009

5


