The Tragedy of the Commons in Traffic Routing and
Congestion

Craig Haseler
Computer Systems Lab
TJHSST
2008-2009

February 23, 2009

Abstract

This project uses Java to create a functional
traffic simulation, focusing on routing and
congestion rather than individual car physics.
We can then use the simulation to make
several important conclusions about human
behavior. The human tendency to always be
self serving is considered an advantage in the
economic system of today, but is this also
true for other systems? This project could
demonstrate the effectiveness of a traffic
solution in which a central computer makes
decisions rather than individual drivers.
While that kind of system is not currently
feasible, it will not be long before we will
have the technology to implement it on
highways at least. In most respects, it will
be a simple matter of connecting the cruise
control system of cars to a central highway
computer bank. Of course, there would be
the hurdles of justifying this much control

to a computer (and of course the risks), but
this project should demonstrate that turning
over control to a computer can have signifi-
cant benefits to society as a whole, even if
it causes individuals to make a slight sacrifice.

Keywords: Multiagent, dynamic simula-
tion, traffic, human nature

1 Introduction

The purpose of this project was to give an ex-
ample of a situation in which there in in fact
an solution to the apparent paradox spelled
out in theoretical situations such as the so-
called Tragedy of the Commons. In that sit-
uation, we ae given a theoretical village with
a herd of cattle owned by various individuals
in the village. They have a restricted amount
of commons area on which to graze the cattle.
The paradox in the situation is that, unlike

the traditional view of economics, the indi-
vidual actions taken purely out of self interest
do not help the village as a whole. If a vil-
lager chooses to increase the size of his herd
of cattle, it will damage the commons, and
potentially even starve the village. However,
he still benefits from this overall, as he now
has more cows, and is richer himself. This
paradox means that people acting purely out
of self interest actually hurt the group as a
whole, and so the society does not succeed.
We see a similar effect in the world of traf-
fic and congestion. People will always act in
their own self interest, even if it slows down
the system as a whole. My goal here is to
demonstrate that the paradox can be solved
by having a overall intelligence which makes
these decisions for the people, acting in the
interest of the system as a whole, rather than
the interest of a specific individual.

2 Background

Traffic dynamics are becoming an important
use for agent-based modeling systems, as they
provide a tangible benefits and are an excel-
lent way to predict the behavior of a generally
unpredictable system. Because a traffic sys-
tem consists of multiple drivers each thinking
and acting independently, the use of semi-
intelligent individual driver-agents is very ef-
fective in a simulation. In this project I will
be comparing this multi-agent approach (an
approximation of what we see on the roads to-
day) with a theoretically ”better” approach,
in which all decisions are made by a central
intelligence, for the good of the system as a

whole. I have done research into various traf-
fic simulation problems, and approaches like
this have been studied before, though not in
the same way. In ”Simulation of Traffic Sys-
tems - An Overview” by Matti Pursula at
Helsinki University of technology, the history
of traffic simulations is discussed, along with
various ways in which it is done. I am focus-
ing on the agent-based modeling system for
this project, and I may (time permitting) in-
corporate some aspects of parallel processing.

3 Structure

The program consists of four separate classes:

3.1 TrafficSim

TrafficSim.java is the main class, it incorpo-
rates the GUI of the simulation window, cal-
culates and displays statistics in the statis-
tic window, and keeps the other three classes
organized. The simulation GUI consists of
a grid of RoadSquare objects, surrounded by
panels with JButtons and JSliders for various
functions. These include adding to the sim-
ulation map, changing the view mode, and
changing the simulation variables.

3.2 RoadSquare

A RoadSquare is an extended JButton, it
stores what its "type” is, its capacity, its
users, and calculates its congestion. When
told what mode the TrafficSim class wants
to display, the RoadSquare sets its picture
or color appropriately. The view modes are:

1) Type - simply displays a picture of the
road/house/factory in a calculated orienta-
tion, this is the most graphically "pretty”
look for the simulation. 2) Coordinates - dis-
plays a basic color to indicate the type, sets
the text of the button to the coordinates of
the button (with the origin in the top left).
3) Users - similar to Coordinates in that it
displays a color to shown the type, but the
text is the number of Car objects currently
using the road. 4) Congestion - this uses the
congestion value calculated (varies with road
capacity, users, simulation variables) to dis-
play a color somewhere from green to red to
indicate the level of congestion. Houses are
shown in white, factories in blue, empty road
in gray, and unused grid locations in black.
RoadSquares can be one of two types of road,
a house, a factory, or an empty square. A
house is defined as the starting point for a
Car object, and a factory is the destination.
If the RoadSquare is a house, it has a Car
object, otherwise that variable is null.

3.3 Car

A Car stores the optimal Route object from
its assigned house to an accessible factory it
randomly chooses.

3.4 Route

The Route class actually calculates the op-
timal route, currently only using the agent-
based algorithm. It stores an ArrayList of
RoadSquares marking the route of the Car.
Together, these four classes are the back-
bone of the project. The project also has

Traffic Simulator v0.7 Gralg) ascleria L

Simulation Options View Modes

Change Jobs
_—l
: e

Time to cross one square
—_————
0 20
Influence of other drivers

Figure 1: A screenshot of the simulation win-
dow set to view-mode " Type” with an exam-
ple "map” created.

about eighty associated image files to make
the "Type” category display correctly.

4 Algorithms Used

In the second quarter, I focussed on refining
the algorithms used to do the basic sorting
and searching of Routes. Rather than trying
to adapt prewritten code, I chose to write my
own code, as I needed a very high level of cus-
tomizability. I replaced the older, very basic
and very inefficient bubble sort with a Quick-
sort, and the old breadth-first search with a
search which in this case is much more ef-
fective, an A* style search. Quicksort: The
QuickSort is a well known sorting algorithm,
and one of the fastest in most cases. I chose
to use it here because there is a very large
amount of data to sort and an inefficient sort
could slow down the program significantly.

Traffic Simulator v0.7

Simulation Options

| change jobs |

View Modes

—0

0 20g
Time to cross one square
_

0 20
Influnce of other drivers

| Reser |

sasicroad agy || sweet@o || nouse || racoy |

Figure 2: A screenshot of the simulation win-
dow set to view-mode ”Congestion” with an
example "map” created.

The program runs 2-3 times faster. A Star:
The A* search is one of the few search algo-
rithms which takes into account both the dis-
tance travelled so far and the estimated dis-
tance remaining. This means it is much more
efficient than other algorithms, and unlike
the old breadth-first algorithm, when given a
pure grid structure of nodes, will not lock up
as it looks at infinite paths. As it is looking
at both the distance travelled and the dis-
tance to go, it will make a beeline right for
the optimal route, saving several seconds of
waiting. This code change has the potential
to increase the running speed of the program
by up to 100x in the best case, and even in
the worst case won’t slow it dow

Craig Haseler pd 1 5 Results and DiSCUSSion

As of now, I do not have results for the com-
parison of the different routing algorithms,
but I can say that the first, agent-based algo-
rithm works as expected. The statistics panel
should give me a good way to compare the
different algorithms under similar conditions,
so that is how I will be able to quantitatively
detail my results.

References

[1] Matti Pursula, “Simulation of Traffic
Systems - An Overview”, Journal of

Geographic Information and Decision
Analysis 18 pp. 1-8, 1999.

Helmut Kopka and Patrick W. Daly,
A Guide to LATEX, Addison-Wesley
Publishing Co., Inc., 1993.

[3] Nikos Drakos and Ross Moore,
LaTeX2HTML Translator Version
99.2 beta8(1.43), Macquarie University,

Sydney, 1999.

[4] Walker, Janice R. et al., " The Columbia
Guide to Online Style”, 1995.

http://www.columbia.edu/cu/cup/cgos/idx_basic.htm

(August 11, 2000)

