
Computer Science for the
Young Mind

TJHSST Computer Systems Lab Senior
Research Project Paper

2008-2009

Paul Im

10/30/08

Abstract

Technology has made tremendous leaps and bounds throughout
the ages. More and more of today’s work force has taken to the field of
computer programming. But sadly enough, there has been limited effort
to teach computer science at the elementary school level, which this
project addresses. The purpose of this project is to implement computer
programming to educate elementary school students in math and science.

1. Introduction

Since the beginning of civilization, mankind has made momentous leaps and
bounds in technological advancement. From the Industrial Revolution of the 1880s to
the dawn of the Digital age, because of how far we’ve come, we now live in a world
once deemed unimaginable. At the center of this new world sits an adapting education
system, where more and more people are taking up jobs in the field of computer science.
Unfortunately, very little progress has been made at the lowest level of education in
terms of technology: children.

Just how young is too young to start programming? (Gates, 2008) The purpose of
this project is to answer this question by advancing an already successful computer
science program at Cardinal Forest Elementary School via Scratch, a program developed
by MIT. Along with fellow students Jessica Gorman and Crystal Noel, I helped provide
teaching. Though not all the students at Cardinal Forest Elementary participated,
enough of them did so to sustain the program.

2. Background

2.1 Computers, Children, and Education

Traditional computer science programs utilize traditional programming
languages, such as Java, Python, or C++, all of which are geared toward high school and
college students. The first attempt to teach computer programming to younger children
was with Logo, which involved telling a turtle how to move around to make various

pictures. Since then, other preliminary programming languages, including Squeak,
Alice, and Scratch, have been implemented with varied levels of success.

Unfortunately, most computers are used to reinforce allegedly outdated teaching
methods, most commonly as a medium for transferring information. This method has
proven to be very ineffective. As several studies have shown, students learn better when
they immerse themselves in lessons rather than simply listen lectures (Gates, 2007).

The goal of this project is to continue the development of an ongoing computer
science curriculum at Cardinal Forest Elementary School. First started in 2007 by
Gregory Gates, the curriculum, inspired by "computer clubhouses" at the Massachusetts
Institute of Technology (MIT), are weekly sessions that run from 30 to 45 minutes at a
time. Not all students participate, but those that do are integral parts of the project.

2.2 Scratch

Scratch was developed and released in 2007 by MIT; it gets its name from its
dynamic editing style, allowing users to edit programs as they’re still running, similarly
to how DJs mix music during performances. Instead of typing commands on various
lines of code, the programming language editor uses simple, colored boxes and images
to provide coding, as if assembling structures with building blocks (Fildes, 2007).
Reminiscent of art programs such as Kid Pix, the colorful and intuitive interface makes
it easy for users to tell that Scratch was specifically geared toward a younger audience,
and users need only to drag boxes to designated programming fields and connect them
together as they see fit. Users are even given the ability to create and edit custom sprites.
As of 2008, the latest release is version 1.3.

Figure 1: Student Badge for Scratch Classes

3. Procedures and Methods

3.1 Timeline

In September, I heard of the possibility of implementing a computer science
program for elementary school kids and took up the opportunity after careful
consideration. I contacted the principals of elementary and middle schools nearby

Thomas Jefferson High School inquiring about such a possibility. After weeks of
hearing nothing from said principals, I received a call from Mr. Frederic Allard, the
same teacher contacted by Gregory Gates last year.

We went to work shortly after I confirmed my willingness to participate. Also
working on the project were Crystal Noel and Jessica Gorman, who had previously been
chosen as successors to Gates' program, but were nonetheless more than happy to
include me.

3.2 Class Structure

The program had to be expanded on in a series of steps. First, my teammates and
I had to work out how we would divide students who had previously taken the Cardinal
Forest Elementary School Scratch course from those who had not.

Unlike my teammates, I had no way of efficient transportation to Cardinal Forest
Elementary. Instead, I used a teleconference system to broadcast live from TJ. The three
of us all wrote different programs to help teach the children and studied various aspects
of teaching in the process.

Teleconferencing allowed me to directly contact the students and faculty at the
elementary school students without leaving Thomas Jefferson High School. In instances
when I could do no such thing, I created program demos for Crystal, Jessica, and Mr.
Allard to use in class for each lesson.

4. References

4

Feldman, Michael B., and Bruce D. Bachus. Concurrent Programming CAN be
Introduced into the Lower-Level Undergraduate Curriculum. Ms. 16 Sept. 2008
<http://www.seas.gwu.edu/~adagroup/concurrency/bachus/>.

<

Fildes, Jonathan. "Free Tool Offers 'Easy' Coding." BBC 14 May 2007. 6 Oct. 2008
<http://news.bbc.co.uk/1/hi/technology/6647011.stm?ls>.

<

Gates, Gregory. TJHSST Computer Systems Lab Senoir Research Project Paper
Elementary Education in a Technology Age. Ts.

T

Hazzan, Orit, Judith Gal-Ezer, and Lenore Blum. "A Model for High School
Computer Education: The Four Key Elements that Make It!" ACM SIGCSE
Bulletin 40.1 (2008): 281-285.

4

 Hoffman, Mark E., Timothy Dansdill, and David S. Herscovici. "Bridging Writing
To Learn and Writing in the Discipline in Computer Science Education."
ACM SIGCSE Bulletin 38.1 (2006): 117-121.

