
TJHSST Computer Systems Lab Senior
Research Project

Computer Science for the Young Mind

Paul Im
2008-2009

Alexandria, Virginia

May 21, 2009

Abstract

Technology plays an integral role in todays society, yet there seems to be a
limited effort to teach computer science at the elementary school level, which
this project addresses. The purpose of this project is to implement computer
programming to educate elementary school students in math and science.
Students at Cardinal Forest Elementary School were thusly taught Scratch
programming to serve as a basis for education in the field of computer science.

Keywords: Computer programming, elementary, math, science

1 Introduction

Our education system is constantly adapting to the evolution of technology.
Progress is therefore important as to learning technology, especially concern-
ing children.

Although there has been some progress in the past, theres still a lack
of significant progress on a large enough scale to be considered noteworthy.
The first attempt to educate elementary school students was with Logo, a
programming language that used a turtle sprite to draw figures with a pen.

1



Soon, other programming languages followed, each one improving on the last.
Still, computer programming education is a major issue in the world when
it comes to students at the elementary school level.

Just how young is too young to start programming? The purpose of this
project is to answer this question by advancing an already successful com-
puter science program at Cardinal Forest Elementary School via Scratch,
a programming language developed by MIT. (Gates, 2008) Along with fel-
low students Jessica Gorman and Crystal Noel, I helped teach the students.
Though not all the students at Cardinal Forest Elementary participated,
enough of them did so to sustain the program.

2 Background

2.1 Computers, Children, and Education

Traditional computer science programs utilize complicated programming lan-
guages, such as Java, Python, or C++, all of which are geared toward high
school and college students. The first attempt to teach computer program-
ming to younger children was with Logo, which involved telling a turtle how
to move around to make various pictures. Since then, other preliminary
programming languages, including Squeak, Alice, and Scratch, have been
implemented with varied levels of success.

The necessary technology to teach Elementary students computer pro-
gramming does exist, but unfortunately, most computers are used to rein-
force allegedly outdated teaching methods, most commonly as a medium for
transferring information. This method has been proven to be very ineffec-
tive, possibly due to a level of educational ineptitude on part of the students
being left with little to do. As several studies have shown, students learn
better when they immerse themselves in lessons instead of simply listening
to lectures (Gates, 2008).

The goal of this project was to continue the development of an ongoing
computer science curriculum at Cardinal Forest Elementary School. First
started in 2007 by Gregory Gates, the curriculum, inspired by ”computer
clubhouses” at the Massachusetts Institute of Technology (MIT), consisted
of weekly sessions that run from 30 to 45 minutes at a time. Not all students
participated, but those that did were integral parts of the project.

2



2.2 Scratch

Scratch was developed and released in 2007 by MIT; it gets its name from
its dynamic editing style, allowing users to edit programs as theyre still
running, similarly to how DJs mix music during performances. Instead of
typing commands on various lines of code, the programming language editor
uses simple, colored boxes and images to provide coding, as if assembling
structures with building blocks (Fildes, 2007).

Reminiscent of art programs such as Kid Pix, the colorful and intuitive
interface makes it easy for users to tell that Scratch was specifically geared
toward a younger audience, and users need only to drag boxes to designated
programming fields and connect them together as they see fit. Users are
even given the ability to create and edit custom sprites. Furthermore, its
influence isnt limited to children; at Harvard University Extension School, it
has been tried out in some introductory computer science classes as a means
for students to start making solid programs early (Johnson, 2007).

As of November 2008, the latest release is version 1.3.1, compatible with
Windows and Mac operating systems. An unofficial version of Scratch 1.2 is
available for Linux.

Figure 1: This image was used as a sample student badge that students
needed to display to Mr. Allard in order to participate.

3



3 Procedures and Methods

3.1 Timeline

In September, I heard of the possibility of implementing a computer science
program for elementary school kids and took up the opportunity after careful
consideration. I contacted the principals of elementary and middle schools
nearby Thomas Jefferson High School inquiring about such a possibility. Af-
ter weeks of hearing nothing from said principals, I received a call from Mr.
Frederic Allard, the same teacher contacted by Gregory Gates last year.

We went to work shortly after I confirmed my willingness to participate.
Also working on the project were Crystal Noel and Jessica Gorman, who had
previously been chosen as successors to Gates’ program, but were nonetheless
more than happy to include me. Soon afterwards, we met together in the
library to discuss who would cover which aspect of the program; Crystal
would investigate Scratch as an online community, Jessica would determine
whether or not grade level is a factor in learning capabilities, and I would
see how effective unconventional teaching methods are.

The program had to be expanded on; my teammates and I had to work
out how we would divide students who had previously taken the Cardinal
Forest Elementary School Scratch course from those who had not. The three
of us made different contributions to help teach the children and studied
various aspects of teaching in the process; by October 9th, 2008, the class
had started.

After spending the first quarter using Scratch as a teaching tool for both
mathematics and computer science, Mr. Allard introduced various projects
for the students to apply their knowledge to. One of which was a ”Kitty
Rectangle” challenge for the children to work on until December. The goal
of this project was to incorporate mathematics into technology; more specif-
ically, it taught the students the concepts of area, perimeter, and angles of
a rectangle. Later, the students worked on a Winter Wonderland project,
whereupon they had to make a snowman move around an ice skating rink
indefinitely by using loops in the programming language.

By April, we started video conferencing via webcams so I could directly
talk to the students. Though the sessions themselves were marred by various
technical difficulties, including slow connections and faulty equipment, . Soon
afterward, plans for a final project were under way, involving suggestions from
various students.

4



3.2 Class Structure

As with last year’s program, the class wasn’t so much a class as it was a com-
puter club. Every Thursday, the students met with Mr. Allard for lessons
designed in part by Jessica, Crystal, and me. Students signed in (for atten-
dance purposes) and quietly sat down at their computers, and then teaching
began. We did, however, tweak the program a bit to further accommodate
for the various age groups and levels of experience represented in the class,
which was divided into five sessions. Each one housed a different grade level
and assembled at a different time of day. For example, the kindergartners and
fifth graders met in session D, between 1:15 PM and 1:55 PM. Also, start-
ing October 16th, 2008, students were given special badges to distinguish
themselves from other students.

I was the main program writer of the group. Every week or so, I would
create and submit a movie made with Scratch for Mr. Allard to review,
edit, and post on Blackboard, all of which were used as teaching aids. Since
there was no direct way of knowing whether or not the children were learning
anything, I just monitored the progress made by the students in each session.
Depending on how good or how bad progress was, I made adjustments to my
style of programming.

Eventually, I had to see the students face to face via video conferencing to
assist them more directly. This initially brought on numerous complications,
such as proper preparation of equipment and lack of a feasible means of
transportation, but were later addressed. By the end of March, we started
conducting video conferencing sessions which, despite some initial technical
difficulties, allowed me to more readily gain a sense of how well the students
were learning.

3.3 Topics

As with last year’s program, the number of topics we covered was dictated by
how quickly the students could move from one topic to another. , so we often
used Scratch to directly teach the students about angles, integers, axes, etc.
Overall, we primarily focused on linking science and mathematics to each
other; in order to navigate around the program’s output window, students
needed to understand the coordinate system and basic geometry. We further
emphasized the need for mathematical knowledge in the projects we designed,
as well as varying features about Scratch. Ranging from a challenge about

5



Figure 2: This program was used as a project demonstration for the students
in January.

the dimensions and properties of a rectangle to a movie of a snowman circling
an ice skating rink, each one incorporated a different aspect of each subject.
While we couldn’t teach everything there was to know about Scratch, we did
what we could and hoped the students would figure out certain aspects on
their own.

The potential of Scratch as a teaching aid is not limited to mathematics
and technology. The coding is designed in such a way as to be almost like
pieces of a colorful puzzle, so in a sense, not only is a user programing, but
also painting a picture. The projects we designed allowed the students to
apply what they learned from Jessica, Crystal, me, and Mr. Allard in class
and at home. In addition, the presentations scheduled into the curriculum
allow students to practice and develop their language arts skills, some more
so than others.

3.4 Resources

The Cardinal Computer Lab features roughly 30 student computers and one
teacher workstation with a computer connected to a SMART Board for pre-
sentations to the class. Mr. Allard also used his laptop on multiple occasions,
including the video conferencing sessions. A larger room could be more ap-

6



propriate to engage more students in any given session, but the room provided
adequate space and materials to teach as many students as possible at any
given session. Eventually, as mentioned earlier, we used webcams to begin
video conferencing over long distances.

To acquire the necessary software for the class, we visited several websites
that hosted different programs to download, including the Scratch database
and programmer, our primary software tool. Initially, we used Skype to
perform video conferences, but later used a TANBERG device with a SMART
board simulator to do so.

4 Results and Conclusion

4.1 Expectations and Aspirations

As of December 2008, I was hopeful that all would go according to plan. The
students, I felt, have learned Scratch efficiently and had a wonderful time
doing so. With the success of a WHUT broadcast documenting the Scratch
program at Cardinal Forest, I think I really made a difference. Maybe this
program could be integrated into Cardinal Forests main curriculum someday.
And with no signs of stopping in sight, the course should benefit from the
aid of a suitable successor, but who?

4.2 Results

As of March 2009, the program is quite a success. The students appear to
be well on their way to learning what they need to learn, and weve made
adjustments to the curriculum as necessary. I still see room for improvement,
however; the lessons were, on occasion, poorly coordinated due to lack of
communication between Jessica, Crystal, and me. As such, there have been
widening differences in how we each approached the curriculum, ranging from
teaching methods to lessons. Fortunately, theyve all led to similar levels of
technological aptitude.

In some ways, the class mimics that of Thomas Jefferson High Schools
own computer science classes. The students are allowed more or less com-
plete in-class freedom to work on projects on the computers under teacher
supervision (in this case, Mr. Allard). The teachers use various resources,
such as projectors and the internet, to reinforce the points of lessons and

7



demonstrate how certain things work in relation to them.

4.3 Discussion

Computer programming can be–and has been–taught to students at the ele-
mentary school level, albeit through radically different means than one would
normally expect. The earlier they start programming and showing interest in
computers, the better. In the end, the students have made great progress in
familiarizing themselves with programming through Scratch, and from what
I’ve seen, someday, the computer may very well become the new medium for
teaching nearly all subjects, including English and Social Studies. So, how
young is to young to start teaching kids how to program (Gates, 2008)? Who
knows? Maybe there’s no such thing as ”too young” to do so.

References

[1] Feldman, Michael B., and Bruce D. Bachus, Concurrent Pro-
gramming CAN be Introduced into the Lower-Level Undergraduate
Curriculum, Ms. 16 Sept. 2008. ¡http://www.seas.gwu.edu/ ada-
group/concurrency/bachus/¿

[2] Fildes, Jonathan, “Free Tool Offers ’Easy’ Coding.”, BBC 14 May 2007.
6 Oct. 2008 ¡http://news.bbc.co.uk/1/hi/technology/6647011.stm?ls¿

[3] Gates, Gregory, TJHSST Computer Systems Lab Senior Research
Project Paper; Elementary Education in a Technology Age, Ts.

[4] Hazzan, Orit, Judith Gal-Ezer, and Lenore Blum, “A Model for High
School Computer Education: The Four Key Elements that Make It”,
ACM SIGCSE Bulletin, 40.1 (2008): 281-285.

[5] Helmut Kopka and Patrick W. Daly, A Guide to LATEX, Addison-
Wesley Publishing Co., Inc., 1993.

[6] Hoffman, Mark E., Timothy Dansdill, and David S. Herscovici, “Bridg-
ing Writing To Learn and Writing in the Discipline in Computer Science
Education” ACM SIGCSE Bulletin, 38.1 (2006): 117-121.

8



[7] Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., and Resnick,
M. (2004). “Scratch: A Sneak Preview.” Second International Confer-
ence on Creating, Connecting, and Collaborating through Computing.
Kyoto, Japan, pp. 104-109.

9


