
An Exploration of Molecular Mechanics and Quantum Chemical

Methods

Masood Malekghassemi

June 9, 2009

Abstract

Computational chemistry is no new subject however, the idea of taking the process from including a
human being in the loop between ab initio methods and general rule making for molecular mechanics
calculations to excluding that same being via AI seems to be unimplemented. This project revolves
around the idea that molecular mechanics is an incredibly fast and viable way of calculating the geometry
of molecules and that as such, given the proper parameterizations and generalities, can be as accurate
as or more accurate than ab initio methods.

However, due to a large number of setbacks including but not limited to: lack of any knowledge of ab
initio methods at the start of the project, five restarts/refactors on the molecular mechanics portion of
the project due to code smell, inaccessible resources (SpringerLink esp.), and resources I never exploited
(teachers); I never finished the project this year. I will continue to work on it and hopefully you will
find a rewritten version of this paper coming from elsewhere.

Chapter 1

Introduction

When one thinks of chemistry one normally
thinks of people in lab coats with beakers of liquids
being mixed together in exact amounts: 0.4 molar
of this, 2 molar of that... However, a relatively ’re-
cent’ form of chemistry has come up called com-
putational chemistry. Instead of putting poten-
tially expensive chemicals together physically to
examine reactions and gather energies and under-
stand geometries of molecules, one can take a de-
sired arrangement of atoms, plug it into a com-
puter, and see what happens. Such programs ex-
ist, namely ’GAMESS’, ’Gaussian’, ’NWChem’,
’AMBRE’, etc. However, these programs are es-
sentially black boxes to the chemist. I wanted to
delve deeper into their inner workings to try to
understand what exactly it was that they were
doing, how it was that they were understand-
ing the basis sets given to them, how they ma-
nipulated wavefunctions, how they found ener-
gies, how they determined geometries, and how
they performed the subroutines required for that
which was said above. The final product for this
project would then be a conglomerate of differ-
ent quantum mechanical (ab initio) methods and
molecular mechanical methods put together to au-
tomate parameterization of molecular mechanical
simulations (which, considering the great lengths
chemists can go through to match their param-
eterizations to certain forms of experiment, is a
difficult task indeed).

1

Chapter 2

Background

2.1 Shallow Background

Computational chemistry is a form of chemistry
that takes physical rules and applies them to vir-
tual models in a virtual space. The chemist enters
a geometry and queries the computer with regards
to its various conformational energies and electron
densities to try to understand how it is that the
molecule behaves. While experiment may be the
final decision on what happens or doesn’t hap-
pen when you mix chemical A with chemical B,
it sometimes leaves the chemist in the dark with
regards to what exactly happens during the reac-
tion. Example questions may be: How is it that
chemical A reacts with chemical B? Where do the
two have to hit for the reaction to occur? How
can I use this information to better engineer the
reaction? Etc. Etc.

Using computational simulations, a chemist can
slow down the reactions to nanosecond long time
steps (even shorter if he/she wants to). The
chemist can determine the theoretical existence of
a chemical that may be helpful for performing a
certain task. The chemist can do preliminary steps
to see whether or not performing actual experi-
ment may be beneficial, irregardless of how ex-
pensive the requisite chemicals may be.

Now, there are three different categories of com-
putational chemistry separated based on how far
removed they are from the fundamentals. The ’ab-
initio’ methods start from first principles and cal-
culate the inner workings of a system. The ’semi-
empirical’ methods still work from first principles,
but take in extra information from empirical stud-
ies and let go of certain calculations to make com-
putation easier (such as scrapping all electrons but

those in the valence shell from consideration). The
’empirical’ methods work directly from empirical
data, working off of a so called ’ball and spring’
model (each bond is a spring parameterized by
experiment).

2.2 Deeper Background

The following is a crash course with many holes
regarding what I’m doing. The point is not to
teach you but to show you just how weird this
stuff is.

The Schrodinger equation is the basis for how
computational chemistry is performed without re-
gards to relativity (for which the mechanics be-
come much more complicated and nigh impossible
[at least for me] for one to understand in the space
of a few months of on and off self-teaching). In its
pseudo-eigenvalue time-independent form, it is:

Hψ = Eψ (1)

Harmless looking enough, it is impossible to
solve this equation for ψ (the function that rep-
resents the entirety of the system) when there
are greater than two interacting bodies involved,
namely more than two protons, electrons, or com-
binations of both. The H is the ’Hamiltonian’
operator which when applied to a wavefunction ψ
scales ψ by its energy under the effect of the given
Hamiltonian. In the case of molecules, the gen-
erally used Hamiltonian pulls out the nuclear re-
pulsion energy, the electronic repulson energy, the

2

electron exchange energy (a difficult item to ex-
plain), the electron-nuclear attraction energy, and
adds it all together to give the total energy of the
system.

To solve this equation, we can use computers to,
instead of analytically solving it exactly (which
again, is impossible for greater than two bod-
ies, ie. anything more complicated than mono-
electronic Hydrogen), analytically and numeri-
cally solve for it approximately. This can be done
in a few methods, but all (seem to) derive them-
selves from the variational principle and pertur-
bation theory. Also, they all share the ’Born-
Oppenheimer approximation’, that is to say that
they all ’freeze’ the nuclei in place in a molecule
to simplify the calculations - allowing the protons
to interact with the electrons causes major math-
ematical headaches and pains.

Starting with the variational theory... We take
the equation above and pre-multiply both sides
by ψ†, and integrate (the multiplication is to avoid
nasty infinities; again, this is a crash course - really
it’s just meant for you to have an idea of just how
much I had to dig to get to this stuff).

〈ψ|H|ψ〉 = 〈ψ|E|ψ〉 (2)

E = 〈ψ|H|ψ〉
〈ψ|ψ〉 (3)

From here, if we can assume that, using molecu-
lar orbital theory, the whole wavefunction is a lin-
ear combination of atomic mono-electronic wave-
functions (spatially, ’orbitals’ [which can also refer
to pairs of electrons]), we can then take ψ and turn
it into a summation Σciφi. Given that we already
know the atomic wavefunctions (solved for by pre-
vious generations of computational chemists), we
can solve for molecular wavefunctions by differen-
tiating the left hand side of (3) with respect to ev-
ery ci, find where there are minimums, and then
use those as our weighted value for that atomic
wavefunction contributing to the whole molecu-
lar wavefunction. This allows us to solve for the
expected lowest energy state (the most likely elec-
tronic conformation of the molecule) given a cer-
tain nuclear arrangement. And that’s the varia-

tional theorem in a highly condensed and slightly
cracked nutshell.

Perturbation theory is slightly easier to compre-
hend. The idea is that, given a system that you
know how to solve, and given a system that is im-
possible to solve but is similar to that which you
can solve, you can add a ’perturbation’ term to the
mathematics involved in the solvable problem to
solve approximately yet accurately the impossible
to solve system. The simplest example of this I
can think of that is applicable is the Hamiltonian
for a Hydrogen atom versus the Hamiltonian for a
Helium atom.

Hydrogen Hamiltonian: H = 52 + 1
r1

(4) He-
lium Hamiltonian: H = 52 + 1

r1
+ 1

r2
+ 1

r1,2
(5)

In the case above, the Helium atom has a hamil-
tonian that is the equivalent of the Hydrogen’s
Hamiltonian when considering each electron indi-
vidually. The added electron repulsion term, the

1
r1,2

, is the ’perturbation’ term, the term that rep-
resents our movement from a simple system to a
slightly more complex system.

2.3 Methods used

The methods mentioned above can then be used
to derive, essentially, the remainder of the com-
putational chemistry methods based in quantum
mechanics. The ’simplest’ of fully ab-initio meth-
ods is the Hartree-Fock method, which basically
takes the wavefunction and makes incremental im-
provements to the individual weightings of atomic
wavefunctions to determine the ground state (or
excited states) of a molecule until a ’self consistent
field’ is generated. A crude analogy to computer
science would be to say that it’s like setting a hill
climbing algorithm loose nearby a local point of in-
terest (say, a minimum in energy). The ’simplest’
of semi-empirical methods, the Extended Huckel
method, doesn’t require a self-consistent field be-
cause of the way it’s set up. No incremental ap-
proach towards the proper wavefunction can be
made.

There are plenty of ab-initio methods, such as
density-functional theory, Hartree-Fock, Moller-

3

Plesset Perturbation Theory, Configuration In-
teraction (various methods are a subset of this),
etc. There are yet more semi-empirical methods:
Fenske-Hall, Simple Huckel Method, Extended
Huckel Method, Pariser-Parr-Pople, Austin-Model
1, CNDO, INDO, NDDO, etc. The ball and spring
model, Molecular Mechanics, is so heavily param-
eterized by experiment that one could consider
each separate force-field (a parameterization of the
model, and there are a lot of them) to be its own
method. In short, there is a large variety of meth-
ods, and each of them is complex in its own right
with regards to implementation.

2.4 The Project

The project will definitely not attempt to imple-
ment every single one of the methods mentioned
above. It will, however, at least attempt to imple-
ment that which is common to the vast majority
of the quantum mechanical methods and a gen-
eralized form of the molecular mechanical meth-
ods as well. The requirements for solving for the
approximate wavefunction in most ab-initio and
semi-empirical methods are shared. With regards
to an equation, the Roothan equation (used in the
Restricted-Hartree-Fock method) sets up the re-
quirements visibly:

FC = SCε (6)

Where F is the Fock matrix (essentially the set
of integrals representing the energetic interactions
between electrons), C is the ’coefficient’ matrix
(representing the weights for our linear combi-
nations of atomic orbitals), and S is the matrix
of overlaps between orbitals. Obviously (for me,
probably not for you - this is a crash course, re-
member?) I need to be able to take the inte-
grals required by the mono-electronic Hamiltonian
across all space (negative infinity to infinity) and
the overlap integrals across all space (again from
negative infinity to infinity). This requires a lot
of research and understanding of the derivations
(both of which have been occupying me for the
longest time).

4

Chapter 3

Methodology

3.1 Integration

To perform the integrations in the most general
way possible, I needed a large number of basic and
advanced mathematics structures capable of han-
dling manipulation of polynomials and integration
of cartesian gaussian functions. In order to take
an overlap integral over all space, for example, one
needs to be able to perform what is essentially
voodoo magic on functions:

∫
·· ·

∫∞
−∞[e−αr

2
Πn
i xidxi] ∗ [e−αr

′2
Πn′

i x
′
idx
′
i] (7)

Where all of the ’x’s with the apostrophe are
translated (as in, mathematically shifted) versions
of those without the apostrophe. To do this re-
quires a decent amount of manipulation of the
monomial terms Πn

i xi and Πn′

i x
′
i. First, one has to

know where the center of the product of the gaus-
sian functions, the e−αr

2
and e−αr

′2
, are going to

end up (by using the Gaussian product rule), then
one has to translate all of the polynomials to coor-
dinates at that point, and then one has to multiply
out the polynomials, and then convert them back
all into a summation of individual monomial terms
with a totally new Gaussian function tacked on to
the end, and then take the necessitated integral
using the Gamma function identity:

∫∞
0
xz−1e−xdx = Γ(z)(8)

In summary, it’s a total pain. Regardless, the
code properly performs the integrals.

3.2 Matrix Diagonalization

This project also requires the diagonalization of
matrices to find the pseudo-eigenvalues of the
Hamiltonian once it is converted to matrix form.
Because the Fock matrix is symmetric in form, the
diagonalization process used may be made as a set
of orthogonal transformations made on the sym-
metric matrix. This is called Jacobi diagonaliza-
tion.

3.3 Programming Methodol-
ogy

While this may not be of much interest, I have
used multiple kinds of programming techniques
specific to C++ to aid in making my code as
extensible as possible. While this led to numer-
ous restarts of the project’s code base due to code
smell (as in, the code started to look too compli-
cated to seriously have been the correct and proper
solution, thus I scrapped it), I eventually came to
an understanding that no matter what I do, I’m
going to be unhappy with what I’ve done because
of trade offs. Thus, in the recent (and final) days
of this project, I’ve made the most progress I’ve
made in the past year. Anyway, continuing...

All classes I’ve created are templated for their
scalar types and natural types and the vast ma-
jority of them have access to type traits classes
(templated classes that utilize the curiously recur-
ring template pattern in C++ to define static type
attributes related to the class they are being tem-
plated for) to determine at compile time what it is

5

that I want them to do with whatever types it is
I’ve given to them. As an example, I’ve templated
my Factorial class to behave differently when given
a type that has a floating point as specified by its
type traits than when given a type that is of the
unsigned integer type as specified again by its type
traits. Thus, code of the form:

Factorial<unsigned>::evaluate(3)

will evaluate to a more numerically exact value
than

Factorial<double>::evaluate(3.0)

because it can take advantage of the constraints
set by the argument’s type without any time con-
suming dynamic run time checking.

There is also, then, my extensive use of what
I call variadic argument iterators. This is a kind
of iterator that I have not seen anywhere else in
anyone else’s code, which is surprising to me be-
cause of just how useful it is, despite the shortcom-
ings of stability and the requirement of great care
when passing it as an argument. The basic idea is
that in vanilla C, there’re constructs called ’vari-
adic functions’ which can take varying numbers of
arguments. The way one grabs the arguments is
by using standard library provided macros, which
are unfriendly when it comes to passing variables
around. Some example code:

int fcn(int num, ...)
{

unsigned tot=0;
va_list ap;
va_start(ap, num);
for(unsigned j=0; j<num; j++)

tot+=va_arg(ap, unsigned);
va_end(ap);
return tot;

}

This particular example shows a va list object
being created. However, considering that the vast
majority of functions that can take varying num-
bers of arguments are generalized to use itera-
tors, the use of variadic arguments have taken a
back seat, despite their aesthetic appeal in code
(and I’m all about making my code pretty, else I
restart).

A solution to change the variadic macro argu-
ments into an iterator suitable for passing to itera-
tor based functions is not too difficult to construct.
An example follows (note: it is missing the copy
functionality necessary to maintain stability of the
iterator across reassignments):

template<typename scalar_t>
struct VariableArgsIterator
{

VariableArgsIterator(scalar_t arg0, va_list* args)
: ap(args), arg(arg0) {}

va_list* ap;
scalar_t arg;
scalar_t operator*()
{ return arg; }
scalar_t operator++()
{ arg = va_arg(*ap, scalar_t); }
scalar_t operator++(int)
{ arg = va_arg(*ap, scalar_t); }

};
int fcn(int num, ...)
{

va_list ap;
va_start(ap, x0);
VariableArgsIterator<scalar_t>

variable_args_iter(x0, &ap);
scalar_t args[dimension];
copy_n(variable_args_iter,

dimension, args);
scalar_t ret = evaluate(args);
va_end(ap);
return ret;

}

Where ’copy n’ is a function that takes an iterator
argument. This particular transformation is suit-
able for generalizing a class that can be templated
to take varying numbers of arguments (such as
classes representing monomials; one function ar-
gument per variable involved in the monomial) in
a particular function without having to respecial-
ize whatever functions that class uses to accept
variadic structure pointers.

6

Chapter 4

Testing

I have been testing the individual components of
my program as they come around. The polynomi-
als in particular were tested thoroughly to ensure
that there was nothing fishy going on with them,
especially for expansion of a variable into another
polynomial and polynomial formation from shift-
ing the variables of a base polynomial (necessary
for calculating overlap as stated in ’Methodol-
ogy’). The various other sections of my math
library with analogs in the Boost Library were
tested against it using random intervals and ran-
dom point choices (far more reliable than defini-
tive point choices, but also nigh impossible to tab-
ulate).

However, testing for the diagonalization of a ma-
trix was a slightly different task requiring a test
matrix. An example matrix and its diagonaliza-
tion is shown below:

4.1 Expected Results

Due to the lack of an actual program, I cannot
have any ’expected results’.

4.2 Visualization

Due to the lack of an actual program, I cannot
have any ’visualizations’, save for simplistic two-
dimensional diagonstic images of orbitals, e.g.:

Figure 4.1: Test on symmetric matrix of Jacobi
diagonalization procedure

7

Figure 4.2: Principle energy level equal to 1

Figure 4.3: Principle energy level equal to 2

8

Chapter 5

Future Direction

Seeing as how this project is nowhere near
completion and my pretentiousness precedes me
on this project, I am obligated to continue this
project to some form of finish. The list of items
on my vast todo list include finding access to doc-
umentation to match mathematical form to what
I can imply of the XML format used by the EMSL
Basis Set Exchange, such that I may actually have
useful radial wavefunction components. I also
need to properly construct the methods used by
the ab initio quantum chemical procedures and I
should decide with finality on the actual structure
of my molecular mechanical model. This act of
deciding is crucial, simply because I essentially re-
did the molecular mechanics part over five times,
wasting crucial months I could have spent on un-
derstanding quantum mechanics. But that’s the
past, continuing on about the future...

Beyond getting access to radial wavefunctions,
I also need to understand the derivations used
for the various integrals in the quantum mechan-
ical methods. The greatest of my concerns is the
coulomb integral (which is a four center integral
- i.e. ridiculously complex), and at the current
time, none of the derivations make much sense (ex-
pansion of 1

r in terms of the spherical harmonics?
What?). Also, there is the issue of having some
sort of visualization to validate my efforts on the
project. That will have to come as I continue to
work on this project past the end of the school
year as well...

9

Bibliography

[1] Basis Set Exchange: A Community Database
for Computational Sciences Schuchardt, K.L.,
Didier, B.T., Elsethagen, T., Sun, L., Guru-
moorthi, V., Chase, J., Li, J., and Windus,
T.L. J. Chem. Inf. Model., 47(3), 1045-1052,
2007, doi:10.1021/ci600510j.

[2] Bohm, D. (1951). Quantum Theory. New York:
Dover.

[3] Cramer, Christopher J. (2004). Essentials of
computational chemistry: theories and mod-
els. John Wiley and Sons.

[4] Guseinov, I. 1970. J. Phys. B: Atom. Molec.
Phys. 3. 1399-412.

[5] Kuang, Jiyun and C D Lin. J. Phys. B: At.
Mol. Opt. Phys. 30 (1997) 25292548.

[6] Lewars, E. (2003). Computational Chemistry:
Introduction to the Theory and Applications
of Molecular and Quantum Mechanics. Boston:
Kluwer Academic Publishers.

[7] Nemes, Gergo. Ed.S.Sykora, Vol.II. Received
September 24, 2007.

[8] Pilar, F. L. (2001). Elementary Quantum
Chemistry (2nd ed.). Mineola, New York:
Dover. (Original work published 1968)

[9] Rasch, J. and A. C. H. Yu. SIAM J. SCI. COM-
PUT. Vol. 25, No. 4, pp. 14161428

[10] Rico, J. F. and R. Lpez and G. Ramrez.
Journal of Molecular Structure: THEOCHEM.
Volume 537, Issues 1-3, 12 March 2001, Pages
27-40

[11] Schlegel, H. Bernard and Michael J. Frisch.
Int. J. Q. Chem. Vol. 54, pp. 83-87.

[12] Stockis, Armel and Roald Hoffmann. J. Am.
Chem. Soc., 1980, 102 (9), pp 29522962

[13] Yasuda, Koji. Wiley InterScience (2007). DOI
10.1002/jcc.20779.

10

