
An Exploration of Computational Empirical
and Quantum Chemical Methods

Masood Malekghassemi

Figure 1: Molecular Mechanics Force-Field, taken from Stanford Folding@Home

Relevant Quantum Chemical Equations
Time-Independent Schrodinger Equation

Hψ = Eψ

Time-Independent Energy

E =
〈ψ|H|ψ〉
〈ψ|ψ〉

Electronic Hamiltonian

H = −Σi52 Ri − Σi52 ri − ΣiΣj
Zi

Ri−ri − ΣiΣj>i
1

ri−rj − ΣiΣj>i
ZiZj
Ri−Rj

Roothaan Equation

FC = SCε

Abstract

Computational chemistry is no new subject however, the

idea of taking the process from including a human being in

the loop between ab initio methods and general rule mak-

ing for molecular mechanics calculations to excluding that

same being via AI seems to be unimplemented. This project

revolves around the idea that molecular mechanics is an in-

credibly fast and viable way of calculating the geometry of

molecules and that as such, given the proper parameteriza-

tions and generalities, can be as accurate as or more accu-

rate than ab initio methods. The final product is a program

capable of performing both and transferring information be-

tween the two classes of methods. The journey to the final

product should include much self-taught knowledge regard-

ing the inner workings of the quantum mechanical model of

chemicals.

Background

Computational chemistry is a form of chemistry that

takes physical rules and applies them to virtual models in

a virtual space. The chemist enters a geometry and queries

the computer with regards to its various conformational en-

ergies and electron densities to try to understand how it is

that the molecule behaves.

There are three different categories of computational chem-

istry separated based on how far removed they are from

the fundamental quantum mechanical equations. The ’ab-

initio’ methods start from first principles and calculate the

inner workings of a system. The ’semi-empirical’ methods

still work from first principles, but take in extra informa-

tion from empirical studies and let go of certain calculations

to make computation easier (such as scrapping all electrons

but those in the valence shell from consideration). The ’em-

pirical’ methods work directly from empirical data, working

off of a so called ’ball and spring’ model (each bond is a

spring parameterized by experiment in a set of parameter-

izations called the ’force-field’).

The (unfinished) Project

Empirical Methods

The project aimed to have the most generic framework possible with regards to the
empirical methods, such that arbitrary patterns of data interpreted by a human or,
in the case of this project’s final aim, the machine, may be more flexibly translated to
the force-field that governs the simulation. This brings to bear the concept of a ’rule’,
that is, an arbitrary chunk of functionality that applies itself to the simulation and
increases or decreases the energy and forces and whatever other parameters the rule
can modify. This allows for such algorithms as hill-climbing or genetic algorithms to
gradually find the lowest energy arrangement (conformation) of the atoms in a given
well-parameterized molecule by interacting with the rules.

Ab-Initio Methods

The ab-initio methods are math intensive and, to solve them precisely, requires
retaining the analytic form of the integrals brought out from the relevant set (shown
in the lower left of this poster) up until the point of numeric evaluation. As an
example, the overlap integral of a gaussian function multiplied by a monomial (from
the matrix of overlap integrals of individual atomic electron wavefunctions ’S’ in the
Roothaan equation) with another atomic wavefunction of the same type centered on
a different atom across all space (integrating from −∞ to ∞ in all dimensions) is
that of a polynomial times a gaussian function, and that in itself is a sum of products
of double factorials. This is managed via analytic polynomial classes.

The actual process for calculating the energies of the molecular conformation in-
volves finding the integrals (or approximating, as with some semi-empirical methods)
of the Fock matrix (F in the Roothan equation). This is like inserting the parts of the
Hamiltonian that apply to electrons (the ones with ’ri’s) in between the two wave-
functions of the overlap integral and then evaluating. Due to the difficulty involved
with this (understanding the derivations for the analytic evaluation of the integrals
to properly implement them), however, they’re not currently implemented. The next
step would be to solve for the energy via diagonalization of the Fock matrix. Because
the Fock matrix is symmetric, one can use Jacobi diagonalization, implemented via
visitor pattern (as in, Gang of Four) to the generalized matrix classes whose type
traits (as in, template metaprogramming - Java programmers don’t have this :-P)
identify them as being symmetric.

Truncated list of Programmatic Techniques

Variadic Function Argument Iterator: takes C variadic functions and
adapts the C macros to that of a C++ iterator, allowing variadic functions to
pass their arguments C++ style to the vast number of iterator algorithms in both
the standard library and elsewhere. Has not been tested for performance, that in
itself is another research project.

Type Traits: a ’standard’ yet advanced way of statically determining the capa-
bilities of classes, allowing for a more flexible, yet somewhat more complicated, way
to overload classes and functions. This is way of investing in the extensibility of the
code in the future. It falls under ’C++ template metaprogramming’, and is absent
from other languages either due to a lack of templates or because the language does
not require these kinds of facilities (ie. the type system is dynamic).

