
The Implementation of Artificial Intelligence and
Temporal Difference Learning Algorithms in a

Computerized Chess Program

James Patrick Mannion
Thomas Jefferson High School for Science and Technology

Alexandria, Virginia

February 10, 2009

Abstract

Computers have developed to the point where
searching through a large set of data to find
an optimum value can be done in a matter
of seconds. However, there are still many do-
mains (primarily in the realm of game theory)
that are too complex to search through with
brute force in a reasonable amount of time,
and so heuristic searches have been developed
to reduce the run time of such searches. That

being said, some domains require very com-
plex heuristics in order to be effective. The
purpose of this study was to see if a com-
puter could improve (or learn) its heuristic as
it runs more searches. The domain used was
the game of chess, which has a very high com-
plexity. The heuristic, or evaluation function,
of a chess program needs to be able to accu-
rately quantify the strength of a players posi-
tion for any instance of the board. Creating
such an evaluation function would be very
difficult because there are so many factors
that go into determining the strength of a po-
sition: the relative value of pieces, the impor-
tance of controlling the center, the ability to
attack the enemys stronger pieces something
that chess masters spend entire lives trying to
figure out. This study looked to see if it was
possible for a computer program to learn an
effective evaluation function by playing many
games, analyzing the results, and modifying
its evaluation function accordingly. The pro-

1



cess by which the program improved its eval-
uation function is called Temporal Difference
learning.

1 Introduction

Heuristic searches (such as the A*) in general
can be applied to practically any domain that
somebody would want to search through.
The actual heuristic functions used, however,
are extremely domain-specific. Some prob-
lems require very simple heuristics (or esti-
mations that allow a program to make good
choices that will lead to the best outcome
without actually knowing the entire search
tree), such as a problem whose domain in-
volves points on a flat surface that are con-
nected by paths, in which the shortest path
from point A to point B is desired. Such a
problems heuristic would simply be the dis-
tance of a hypothetical straight path from
the current point on the path to point B. By
adding this estimation to the total distance
traveled along a path thus far and compar-
ing it to the total distances and estimated
remaining distances of other possible paths,
a search program can find the optimum so-
lution to this problem quite easily. This is
an example of a domain with a very simple
heuristic to calculate. However, many prob-
lems that researchers are interested in nowa-
days have much more complex domains, and
therefore much more complex heuristics. The
age-old game of chess is one such problem.

In 1997, IBM created a chess program
called Deep Blue that beat the world cham-
pion chess player at the time. Deep Blue used

a brute-force approach to chess. It would look
at every possible move, and then every possi-
ble move that could result after each of those
original moves, and each third possible move,
and so on and so on to about 6-12 moves into
the future but in some cases up to as many
as 40 moves. And it would calculate all of
this before it even made the first move. Each
time it would search all the possibilities and
make the move that would give the highest
chance of checkmate down the road. Chess
champion Garry Kasparov was defeated by
Deep Blue. Most chess masters can look at
their deepest about 10-12 moves into the fu-
ture for a few possible paths (certainly not all
of them), but no human has the brain power
to play out every possible path out to 6 or
more moves in their head before making each
decision. However, IBM needed a state of
the art supercomputer to run this program
at a reasonable speed. Running it on any-
thing less than a supercomputer would take
days or even weeks for the game to finish.
On average, there are about 30 moves that
a player can make at any given time. This
means that each turn, Deep Blues brute-force
algorithm would have to search through at
least 306 moves, or about 7.29 x 108 moves.
It is quite clear that using such a method on
a machine other than a supercomputer would
simply be impractical.

It is possible to write a computer chess pro-
gram that is still effective without using the
brute-force method. By looking only, say,
two or three moves into the future rather
than 10 moves or more, a program can still
make educated decisions about good moves
to make if it has some way of estimating how

2



strong a projected position would be. This is
where a heuristic, or evaluation function as
it is more commonly called in the context of
board games like chess, comes in handy. By
looking a few moves into the future, apply-
ing the evaluation function to each possible
board, and choosing a move based on which
projected board has the highest strength of
position, a computer can still be an effective
chess player, while at the same time dramat-
ically cutting down the number of required
calculations.

It sounds simple enough, but once you ac-
tually try to create such an evaluation func-
tion, it becomes much, much harder. How
do you effectively evaluate a position? Do
you just look at the number of your pieces
versus the number of their pieces? Do you
look at whether or not your pieces control
the center? Do you look at the possibility
of sacrificing one of your own pieces in order
to capture a more important piece? An eval-
uation function can be very complicated to
formulate, especially in a game such as chess
where there are so many strategic factors to
take into account. Chess masters spend en-
tire lifetimes figuring out the best way to eval-
uate which moves they should make, so at
first creating such a function could seem very
daunting, especially for someone who has not
devoted years to learning the game of chess.

But if chess masters learn how to decide
which moves to make by playing a lot of
games and learning from their mistakes, why
couldnt a computer do the same thing? In
fact, computers, although they lack human
intuition, can play full games of chess in a
matter of seconds, so it is conceivable that

they could learn how to effectively evalu-
ate moves much faster than a human could.
Therein lies the purpose of this study: to
see whether or not a computer can be pro-
grammed to not only play chess effectively
and efficiently, but also learn from its mis-
takes, like humans do, and get better from
game to game. The chess program I have
developed uses Temporal Difference learning
to analyze the games it plays and modify its
evaluation function accordingly. This means
that theoretically, the program could start
out by making random moves, but then mod-
ify its evaluation function so that it pro-
gresses from simply choosing a random move
to actually making an educated choice.

2 Background

In 1950, Claude Shannon wrote a ground-
breaking paper called Programming a Com-
puter for Playing Chess. It dealt with vari-
ous issues, such as how one might go about
writing an artificial intelligence program that
could play chess well, and what the evalua-
tion of such a program might look like. It
discussed the problems involved with brute-
force chess algorithms and suggested an AI al-
gorithm that a computer chess program could
use. It suggested using a 2-ply algorithm (an
algorithm that looks two turns into the fu-
ture before applying the evaluation function),
however if the program finds that a move
could lead to a check or checkmate, then it
would investigate that move and subsequent
moves out to as many as 10 turns. At the
end of the paper, Shannon speculated about

3



the possibility of computer programs that can
learn, but noted that such developments were
probably man years down the road.

About 50 years later in 1999, D.F. Beal and
M.C. Smith published a paper called Tempo-
ral difference learning for heuristic search and
game playing. At this point, programs that
could play chess had been well-developed,
but research in machine learning was really
just beginning. The paper investigated the
use of Temporal Difference learning as a way
of making a computer chess program modify
and improve its evaluation function each time
it plays. The researchers made their chess
program learn for 20,000 games, and then
ran their program against a program that
had not learned its evaluation function. The
learned program performed decisively better
over 2000 games than the unlearned program,
showing that it is indeed possible for comput-
ers to improve their evaluation functions.

Similar studies have been done in other ar-
eas. In 2007, Shiu-li Huang and Fu-ren Lin
used Temporal Difference learning to teach
two agents how to effectively negotiate prices
with each other so that agreements that max-
imize payoff and settlement rates for both
parties. TD learning was shown to be very
effective for this purpose. One of the reasons
TD learning was chosen from the many differ-
ent types of learning for this project was its
usefulness in different domains. If it proves
to be effective in chess, in addition to bar-
gaining, then it could very well be effective
for any problem in the very general and vast
field of artificial intelligence.

Researchers David E. Moriarty and Riso
Miikkulainen from the University of Texas

at Austin used a different type of machine
learning called evolutionary neural networks
to create programs that could play Othello.
They found that even though their programs
were given no information about the game,
they eventually learned very complex Oth-
ello strategies that have only been mastered
by high-level human Othello masters. It is
very interesting that a computer would natu-
rally learn strategies in a matter of days that
took humans years and years to conceive. In
this project I will analyze the fruits of TD
learning to see if well-known chess strategies
naturally emerge over the course of testing.

3 Development

Python was used to code this chess program.
The first stage of the program simply in-
volved a console-based chess game where two
humans could input their moves into the com-
mand line, and the board would be re-printed
with the new move, as shown in Figures 1-3.

This program underwent numerous debug-
ging sessions to make sure that it would cor-
rectly handle illegal moves, checks, check-
mates, castling, the obscure en passant pawn
capture, and other game play mechanics. For
the sake of simplicity, stalemates were called
after 200 moves (100 turns) without check-
mate.

Stage two of the project involved writing
simple AI players. The first AI player writ-
ten was one that simply made a random legal
move. The next AI player written was simply
a three-ply minimax search with alpha-beta

4



Figure 1: The starting board, with white
about to move a pawn.

pruning. Its heuristic function was such that
it would chose moves based on a simple piece
differential, with each piece being weighted
the same as every other piece, regardless of
position on the board. These two programs
were created for the purpose of comparing the
progress of a player with TD learning against
a constant player over time.

Stage three introduced temporal difference
learning. TD learning compares predictions
of future board states to actual values seen
later on in the game and adjusts the weights
of the heuristic function in order to make pre-
dictions made in later games closer to ob-
served values. As more and more games are
played, the weights of the heuristic function
will improve and move toward equilibrium
values. The more in-game values that are ob-
served, the more accurate and more effective
these equilibrium values will become.

Figure 2: White pawn moved, black about to
move a pawn.

Figure 3: Black pawn moved.

5



The heuristic function is set up as follows:

h = c1(p1) + c2(p2) + c3(p3) + c4(p4) + c5(p5)
(1)

In this equation, c (each initially set to
1) represents the weight given to each
type of piece (1=pawn, 2=knight, 3=bishop,
4=rook, 5=queen) and p represents the sum
of the values of the spaces being occupied by
each type of piece. The following is used to
calculate p:

pi =
∑

wi

∑
bi (2)

Here, wi is the value associated with the
square occupied by the piece of type i, and∑

wi is the sum of these values for every
white piece of type i. The same sum for
the black pieces is subtracted from the sum
of white pieces. The values for w and b are
found by looking at the corresponding piece-
square table which is stored in a text file.
For example, the initial piece-square table for
pawns would look like this:

1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1

This means that initially, pawns are val-
ued the same regardless of where they are on
the board, which would result in p1 simply
being the number of pawns white has minus
the number of pawns black has.

As the program learns, the coefficients c1

through c5 will be adjusted, as well as the

values in the piece-square tables. This means
that board states will be evaluated based on
the relative numbers of pieces each player
controls, their respective locations on the
board, and the value of each type of piece
with respect to the other types of pieces.

4 Testing and Analysis

The program with TD learning was run
against a static program. All weight values
in the heuristic were initialized as 1. The
win-loss differential of the learner was tracked
over 2,000 games to see if the learner would
start winning more and more as it underwent
the learning process.

The altered piece-square tables were ana-
lyzed after the learning session was complete
to see if the program developed generally ac-
cepted strategies such as maintaining control
of the center. Higher numbers toward the
center of the boards would indicate such a
strategy.

5 Conclusion

References

[1] Shannon, Claude E. “Programming a
Computer for Playing Chess”. 1950.

[2] Beal, D.F. and Smith, M.C. “Temporal
Difference Learning for Heuristic Search
and Game Playing”. 1999.

[3] Moriarty, David E. and Miikkulainen,
Risto. “Discovering Complex Othello

6



Strategies Through Evolutionary Neural
Networks”.

[4] Huang, Shiu-li and Lin, Fu-ren. “Using
Temporal-Difference Learning for Multi-
Agent Bargaining”. 2007.

[5] Russell, Stuart and Norvig, Peter. Arti-
ficial Intelligence: A Modern Approach.
Second Edition. 2003.

7


