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Abstract

Computers have developed to the point where searching through
a large set of data to find an optimum value can be done in a matter
of seconds. However, there are still many domains (primarily in the
realm of game theory) that are too complex to search through with
brute force in a reasonable amount of time, and so heuristic searches
have been developed to reduce the run time of such searches. That
being said, some domains require very complex heuristics in order to
be effective. The purpose of this study was to see if a computer could
improve (or learn) its heuristic as it runs more searches. The domain



used was the game of chess, which has a very high complexity. The
heuristic, or evaluation function, of a chess program needs to be able to
accurately quantify the strength of a players position for any instance
of the board. Creating such an evaluation function would be very dif-
ficult because there are so many factors that go into determining the
strength of a position: the relative value of pieces, the importance of
controlling the center, the ability to attack the enemys stronger pieces
something that chess masters spend entire lives trying to figure out.
This study looked to see if it was possible for a computer program
to learn an effective evaluation function by playing many games, ana-
lyzing the results, and modifying its evaluation function accordingly.
The process by which the program improved its evaluation function is
called Temporal Difference learning.

1 Introduction

Heuristic searches (such as the A*) in general can be applied to practically
any domain that somebody would want to search through. The actual heuris-
tic functions used, however, are extremely domain-specific. Some problems
require very simple heuristics (or estimations that allow a program to make
good choices that will lead to the best outcome without actually knowing the
entire search tree), such as a problem whose domain involves points on a flat
surface that are connected by paths, in which the shortest path from point A
to point B is desired. Such a problems heuristic would simply be the distance
of a hypothetical straight path from the current point on the path to point B.
By adding this estimation to the total distance traveled along a path thus far
and comparing it to the total distances and estimated remaining distances
of other possible paths, a search program can find the optimum solution to
this problem quite easily. This is an example of a domain with a very simple
heuristic to calculate. However, many problems that researchers are inter-
ested in nowadays have much more complex domains, and therefore much
more complex heuristics. The age-old game of chess is one such problem.

In 1997, IBM created a chess program called Deep Blue that beat the
world champion chess player at the time. Deep Blue used a brute-force
approach to chess. It would look at every possible move, and then every
possible move that could result after each of those original moves, and each
third possible move, and so on and so on to about 6-12 moves into the future
but in some cases up to as many as 40 moves. And it would calculate all



of this before it even made the first move. Each time it would search all
the possibilities and make the move that would give the highest chance of
checkmate down the road. Chess champion Garry Kasparov was defeated by
Deep Blue. Most chess masters can look at their deepest about 10-12 moves
into the future for a few possible paths (certainly not all of them), but no
human has the brain power to play out every possible path out to 6 or more
moves in their head before making each decision. However, IBM needed a
state of the art supercomputer to run this program at a reasonable speed.
Running it on anything less than a supercomputer would take days or even
weeks for the game to finish. On average, there are about 30 moves that a
player can make at any given time. This means that each turn, Deep Blues
brute-force algorithm would have to search through at least 30° moves, or
about 7.29 x 10® moves. It is quite clear that using such a method on a
machine other than a supercomputer would simply be impractical.

It is possible to write a computer chess program that is still effective with-
out using the brute-force method. By looking only, say, two or three moves
into the future rather than 10 moves or more, a program can still make edu-
cated decisions about good moves to make if it has some way of estimating
how strong a projected position would be. This is where a heuristic, or eval-
uation function as it is more commonly called in the context of board games
like chess, comes in handy. By looking a few moves into the future, applying
the evaluation function to each possible board, and choosing a move based
on which projected board has the highest strength of position, a computer
can still be an effective chess player, while at the same time dramatically
cutting down the number of required calculations.

It sounds simple enough, but once you actually try to create such an
evaluation function, it becomes much, much harder. How do you effectively
evaluate a position? Do you just look at the number of your pieces versus the
number of their pieces? Do you look at whether or not your pieces control the
center? Do you look at the possibility of sacrificing one of your own pieces in
order to capture a more important piece? An evaluation function can be very
complicated to formulate, especially in a game such as chess where there are
so many strategic factors to take into account. Chess masters spend entire
lifetimes figuring out the best way to evaluate which moves they should make,
so at first creating such a function could seem very daunting, especially for
someone who has not devoted years to learning the game of chess.

But if chess masters learn how to decide which moves to make by playing
a lot of games and learning from their mistakes, why couldnt a computer



do the same thing? In fact, computers, although they lack human intuition,
can play full games of chess in a matter of seconds, so it is conceivable
that they could learn how to effectively evaluate moves much faster than
a human could. Therein lies the purpose of this study: to see whether or
not a computer can be programmed to not only play chess effectively and
efficiently, but also learn from its mistakes, like humans do, and get better
from game to game. The chess program I have developed uses Temporal
Difference learning to analyze the games it plays and modify its evaluation
function accordingly. This means that theoretically, the program could start
out by making random moves, but then modify its evaluation function so
that it progresses from simply choosing a random move to actually making
an educated choice.

2 Background

In 1950, Claude Shannon wrote a groundbreaking paper called Programming
a Computer for Playing Chess. It dealt with various issues, such as how one
might go about writing an artificial intelligence program that could play chess
well, and what the evaluation of such a program might look like. It discussed
the problems involved with brute-force chess algorithms and suggested an
AT algorithm that a computer chess program could use. It suggested using
a 2-ply algorithm (an algorithm that looks two turns into the future before
applying the evaluation function), however if the program finds that a move
could lead to a check or checkmate, then it would investigate that move and
subsequent moves out to as many as 10 turns. At the end of the paper,
Shannon speculated about the possibility of computer programs that can
learn, but noted that such developments were probably man years down the
road.

About 50 years later in 1999, D.F. Beal and M.C. Smith published a paper
called Temporal difference learning for heuristic search and game playing. At
this point, programs that could play chess had been well-developed, but re-
search in machine learning was really just beginning. The paper investigated
the use of Temporal Difference learning as a way of making a computer chess
program modify and improve its evaluation function each time it plays. The
researchers made their chess program learn for 20,000 games, and then ran
their program against a program that had not learned its evaluation func-
tion. The learned program performed decisively better over 2000 games than



the unlearned program, showing that it is indeed possible for computers to
improve their evaluation functions.

Similar studies have been done in other areas. In 2007, Shiu-li Huang
and Fu-ren Lin used Temporal Difference learning to teach two agents how
to effectively negotiate prices with each other so that agreements that max-
imize payoff and settlement rates for both parties. TD learning was shown
to be very effective for this purpose. One of the reasons TD learning was
chosen from the many different types of learning for this project was its use-
fulness in different domains. If it proves to be effective in chess, in addition
to bargaining, then it could very well be effective for any problem in the very
general and vast field of artificial intelligence. In another study called ” Rela-
tional Temporal Difference Learning”, researchers Nima Asgharbeygi, David
Stracuzzi, and Pat Langley developed a type of learning called Relational
Temporal Difference learning, which fuses the adaptability and effectiveness
of Temporal Difference learning with the speed of Relational Reinforcement
learning (a type of learning that generalizes the learning rather than making
it move-specific). They tested their learning fusion on a series of games with
well-defined rules including Tic-Tac-Toe and MiniChess and showed that the
learning worked well for every game they threw at it. Like the bargaining
study, this demonstrated that TD learning is a very versatile type of learning
that could have widespread implications in the realm of artificial intelligence.

Researchers David E. Moriarty and Riso Miikkulainen from the University
of Texas at Austin used a different type of machine learning called evolution-
ary neural networks to create programs that could play Othello. They found
that even though their programs were given no information about the game,
they eventually learned very complex Othello strategies that have only been
mastered by high-level human Othello masters. It is very interesting that
a computer would naturally learn strategies in a matter of days that took
humans years and years to conceive. In this project I will analyze the fruits
of TD learning to see if well-known chess strategies naturally emerge over
the course of testing.

3 Development

Python was used to code this chess program. The first stage of the program
simply involved a console-based chess game where two humans could input
their moves into the command line, and the board would be re-printed with



the new move, as shown in Figures 1-3.
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Figure 1: The starting board, with white about to move a pawn.

This program underwent numerous debugging sessions to make sure that
it would correctly handle illegal moves, checks, checkmates, castling, the
obscure en passant pawn capture, and other game play mechanics. For the
sake of simplicity, stalemates were called after 200 moves (100 turns) without
checkmate.

Stage two of the project involved writing simple Al players. The first Al
player written was one that simply made a random legal move. The next
AT player written was simply a three-ply minimax search with alpha-beta
pruning. A minimax search is a type of adversarial search which uses a
heuristic function to not only choose which move the program thinks is best,
but to guess the move that the other player will make during their turn. A
three-ply search is one in which the program looks three moves into the future
before making it’s movement choices. Its heuristic function was such that it
would chose moves based on a simple piece differential, with each piece being
weighted the same as every other piece, regardless of position on the board.
These two programs were created for the purpose of comparing the progress
of a player with TD learning against a constant player over time.

Stage three introduced temporal difference learning. TD learning com-
pares predictions of future board states to predictions seen later on in the
game and adjusts the weights of the heuristic function in order to make pre-
dictions made in later games closer to observed values. As more and more
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Figure 2: White pawn moved, black about to move a pawn.
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Figure 3: Black pawn moved.



games are played, the weights of the heuristic function will improve and move
toward equilibrium values. The more in-game values that are observed, the
more accurate and more effective these equilibrium values will become. The
TD learning algorithm that was developed in this study worked like so: given
a term in a heuristic function w;x; where w; is the weight of the term and
x; is a measured value that the heuristic is dependent on, the weight will be
modified in the following manner:

w; < — —w; + a((n;e —n;p)/(nic)) (1)

Here, a is a coefficient that decreases as more and more board states are seen
by the program, ¢ denotes a current value and p denotes a previous value. If
the current value is favored, the weight will increase. If the previous value
is favored, the weight will decrease. The purpose of a is to make the weight
change less and less as more games are played so that the weight closes in on
an equilibrium value over time.

The heuristic function is set up as follows:

h = ci(p1) + ca(p2) + c3(p3) + ca(pa) + cs5(ps) (2)

In this equation, ¢ (each initially set to 1) represents the weight given to
each type of piece (1=pawn, 2=knight, 3=bishop, 4=rook, 5=queen) and p
represents the sum of the values of the spaces being occupied by each type
of piece. The following is used to calculate p:

pizzwizbi (3)

Here, w; is the value associated with the square occupied by the piece of type
i, and > w; is the sum of these values for every white piece of type i. The
same sum for the black pieces is subtracted from the sum of white pieces. The
values for w and b are found by looking at the corresponding piece-square
table which is stored in a text file. For example, the initial piece-square table
for pawns would look like this:
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0



1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0

This means that initially, pawns are valued the same regardless of where
they are on the board, which would result in p; simply being the number of
pawns white has minus the number of pawns black has.

As the program learns, the coefficients ¢; through c; will be adjusted, as
well as the values in the piece-square tables. This means that board states
will be evaluated based on the relative numbers of pieces each player controls,
their respective locations on the board, and the value of each type of piece
with respect to the other types of pieces.

4 Testing and Analysis

The program with TD learning was run against the computer player de-
scribed above that used a simple piece-differential heuristic. All weight val-
ues in the heuristic were initialized as 1. Fig. 3 shows the progress of one of
the weights in the heuristic function. The win-loss differential of the learner
was tracked over 2,000 games to see if the learner would start winning more
and more as it underwent the learning process. Fig. 4 shows the progress of
the learner’s win-loss differential.
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Figure 4: A changing weight in the evaluation function.

The altered piece-square tables were analyzed after the learning session
was complete to see if the program developed generally accepted strategies



Win-Loss Differential vs Games Played Against Static Opponent
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Figure 5: The increasing win-loss differential of the machine learner.

such as maintaining control of the center. Higher numbers toward the center
of the boards would indicate such a strategy.

5 Conclusion
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