
The Implementation of Artificial Intelligence
and Temporal Difference Learning Algorithms

in a Computerized Chess Program

James Patrick Mannion
Computer Systems Laboratory

Thomas Jefferson High School for Science and Technology
Alexandria, Virginia

June 9, 2009

Abstract

Computers have developed to the point where searching through
a large set of data to find an optimum value can be done in a matter
of seconds. However, there are still many domains (primarily in the
realm of game theory) that are too complex to search through with
brute force in a reasonable amount of time, and so heuristic searches
have been developed to reduce the run time of such searches. That
being said, some domains require very complex heuristics in order to
be effective. The purpose of this study was to see if a computer could

1



improve (or learn) its heuristic as it runs more searches. The domain
used was the game of chess, which has a very high complexity. The
heuristic, or evaluation function, of a chess program needs to be able
to accurately quantify the strength of a players position for any in-
stance of the board. Creating such an evaluation function would be
very difficult because there are so many factors that go into deter-
mining the strength of a position: the relative value of pieces, the
importance of controlling the center, the ability to attack the enemys
stronger pieces something that chess masters spend entire lives trying
to figure out. This study looked to see if it was possible for a computer
program to “learn” an effective evaluation function by playing many
games and modifying its evaluation function to achieve better results.
The process by which the program improved its evaluation function is
called Temporal Difference learning, which does not require the pro-
gram to know anything about chess strategies before learning begins
and which looks at how changes in the heuristic function affect the
predicted strength of the outcomes of the current boardstate in order
to adjust the evaluation function appropriately. [1]

1 Introduction

Heuristic searches (such as the A*) in general can be applied to practically
any domain that somebody would want to search through. The actual heuris-
tic functions used, however, are extremely domain-specific. Some problems
require very simple heuristics (or estimations that allow a program to make
good choices that will lead to the best outcome without actually knowing the
entire search tree), such as a problem whose domain involves points on a flat
surface that are connected by paths, in which the shortest path from point A
to point B is desired. Such a problems heuristic would simply be the distance
of a hypothetical straight path from the current point on the path to point B.
By adding this estimation to the total distance traveled along a path thus far
and comparing it to the total distances and estimated remaining distances
of other possible paths, a search program can find the optimum solution to
this problem quite easily. This is an example of a domain with a very simple
heuristic to calculate. However, many problems that researchers are inter-
ested in nowadays have much more complex domains, and therefore much
more complex heuristics. The age-old game of chess is one such problem.

It is possible to write a computer chess program that is effective at playing

2



chess without having to search through the whole game tree (also known as
a “brute-force” algorithm). By looking only, say, two or three moves into
the future rather than 10 moves or more, a program can still make educated
decisions about good moves to make if it has some way of estimating how
strong a projected position would be. This is where a heuristic, or evaluation
function as it is more commonly called in the context of board games like
chess, comes in handy. By looking a few moves into the future, applying the
evaluation function to each possible board, and choosing a move based on
which projected board has the highest strength of position, a computer can
still be an effective chess player, while at the same time dramatically cutting
down the number of required calculations.

It sounds simple enough, but once you actually try to create such an
evaluation function, it becomes much, much harder. How do you effectively
evaluate a position? Do you just look at the number of your pieces versus the
number of their pieces? Do you look at whether or not your pieces control the
center? Do you look at the possibility of sacrificing one of your own pieces in
order to capture a more important piece? An evaluation function can be very
complicated to formulate, especially in a game such as chess where there are
so many strategic factors to take into account. Chess masters spend entire
lifetimes figuring out the best way to evaluate which moves they should make,
so at first creating such a function could seem very daunting, especially for
someone who has not devoted years to learning the game of chess.

But if chess masters learn how to decide which moves to make by playing a
lot of games and learning from their mistakes, why couldnt a computer do the
same thing? In fact, computers, although they lack human intuition, can play
full games of chess in a matter of seconds, so it is conceivable that they could
learn how to effectively evaluate moves much faster than a human could.
Therein lies the purpose of this study: to see whether or not a computer
can be programmed to not only play chess effectively and efficiently, but also
learn from its mistakes, like humans do, and get better from game to game.
The chess program I have developed uses Temporal Difference learning to
modify its evaluation function every turn by looking at how modifying a
giving weight will improve the predicted chance of winning the game. This
means that theoretically, the program could start out by making random
moves, but then modify its evaluation function so that it progresses from
simply choosing a random move to actually making an educated choice.

3



2 Background

In 1950, Claude Shannon wrote a groundbreaking paper called “Program-
ming a Computer for Playing Chess.” It dealt with various issues, such
as how one might go about writing an artificial intelligence program that
could play chess well, and what the evaluation of such a program might look
like. It discussed the problems involved with brute-force chess algorithms
and suggested an AI algorithm that a computer chess program could use. It
suggested using a 2-ply algorithm (an algorithm that looks two turns into the
future before applying the evaluation function), however if the program finds
that a move could lead to a check or checkmate, then it would investigate
that move and subsequent moves out to as many as 10 turns. At the end of
the paper, Shannon speculated about the possibility of computer programs
that can “learn,” but noted that such developments were probably man years
down the road. [2]

About 50 years later in 1999, D.F. Beal and M.C. Smith published a paper
called “Temporal difference learning for heuristic search and game playing.”
At this point, programs that could play chess had been well-developed, but
research in machine learning was really just beginning. The paper investi-
gated the use of Temporal Difference learning as a way of making a computer
chess program modify and improve its evaluation function each time it plays.
The researchers made their chess program learn for 20,000 games, and then
ran their program against a program that had not learned its evaluation
function. The learned program performed decisively better over 2000 games
than the unlearned program, showing that it is indeed possible for computers
to improve their evaluation functions. [3]

Similar studies have been done in other areas. In 2007, Shiu-li Huang
and Fu-ren Lin used Temporal Difference learning to teach two agents how
to effectively negotiate prices with each other so that agreements that max-
imize payoff and settlement rates for both parties. TD learning was shown
to be very effective for this purpose [4]. One of the reasons TD learning was
chosen from the many different types of learning for this project was its use-
fulness in different domains. If it proves to be effective in chess, in addition
to bargaining, then it could very well be effective for any problem in the very
general and vast field of artificial intelligence. In another study called “Rela-
tional Temporal Difference Learning”, researchers Nima Asgharbeygi, David
Stracuzzi, and Pat Langley developed a type of learning called Relational
Temporal Difference learning, which fuses the adaptability and effectiveness

4



of Temporal Difference learning with the speed of Relational Reinforcement
learning (a type of learning that generalizes the learning rather than making
it move-specific). They tested their learning fusion on a series of games with
well-defined rules including Tic-Tac-Toe and MiniChess and showed that the
learning worked well for every game they threw at it. Like the bargaining
study, this demonstrated that TD learning is a very versatile type of learning
that could have widespread implications in the realm of artificial intelligence.
[5]

Researchers David E. Moriarty and Riso Miikkulainen from the University
of Texas at Austin used a different type of machine learning called evolution-
ary neural networks to create programs that could play Othello. They found
that even though their programs were given no information about the game,
they eventually learned very complex Othello strategies that have only been
mastered by high-level human Othello masters. [6] It is very interesting that
a computer would naturally learn strategies in a matter of days that took
humans years and years to conceive. In this project I will analyze the fruits
of TD learning to see if well-known chess strategies naturally emerge over
the course of testing.

3 Development

Python was used to code this chess program. The first stage of the program
simply involved a console-based chess game where two humans could input
their moves into the command line, and the board would be re-printed with
the new move, as shown in Figures 1-3.

This program underwent numerous debugging sessions to make sure that
it would correctly handle illegal moves, checks, checkmates, castling, the
obscure en passant pawn capture, and other game play mechanics. For the
sake of simplicity, stalemates were called after 200 moves (100 turns) without
checkmate.

Stage two of the project involved writing simple AI players. The first AI
player written was one that simply made a random legal move. The next
AI player written was simply a three-ply minimax search with alpha-beta
pruning. A minimax search is a type of adversarial search which uses a
heuristic function to not only choose which move the program thinks is best,
but to guess the move that the other player will make during their turn. A
three-ply search is one in which the program looks three moves into the future

5



Figure 1: The starting board, with white about to move a pawn.

before making it’s movement choices. Its heuristic function was such that it
would chose moves based on a simple piece differential, with each piece being
weighted the same as every other piece, regardless of position on the board.
These two programs were created for the purpose of comparing the progress
of a player with TD learning against a constant player over time.

Stage three introduced temporal difference learning. TD learning com-
pares predictions of future board states to predictions seen later on in the
game and adjusts the weights of the heuristic function in order to make pre-
dictions made in later games closer to observed values. As more and more
games are played, the weights of the heuristic function will improve and move
toward equilibrium values. The more in-game values that are observed, the
more accurate and more effective these equilibrium values will become. The
TD learning algorithm that was developed in this study worked like so: given
a term in a heuristic function wixi where wi is the weight of the term and
xi is a measured value that the heuristic is dependent on, the weight will be
modified in the following manner (similar to [3]):

wi ←− wi + a(Pt − Pt−1)∂wi
Pt−1 (1)

a =
200

199 + t
(2)

P =
1

1 + e−h
(3)

6



Figure 2: White pawn moved, black about to move a pawn.

h =
5∑

i=1

wixi (4)

xi = ji − ki (5)

Here, ji and ki are respectively the number of black and white pieces of type
i, a is a coefficient that decreases as more and more board states are seen by
the program, ∂wi

Pt−1 is the partial derivative of the predicted success rate
(which has been squished to a number between 0 and 1 from the evaluation
function h) with respect to the weight, t denotes a current timestep and
t − 1 denotes a previous value. If the current value is favored, the weight
will increase. If the previous value is favored, the weight will decrease. The
purpose of a is to make the weight change less and less as more games are
played so that the weight closes in on an equilibrium value over time.

As the program progresses each timestep (or each turn for the learning
player), the weights w1 through w5 will be adjusted, hopefully for the better.
This means that board states will be evaluated based on the relative numbers
of pieces each player controls and the value of each type of piece with respect
to the other types of pieces.

7



Figure 3: Black pawn moved.

4 Testing

The program with TD learning was run against the computer player de-
scribed above that used a simple piece-differential heuristic. All weight val-
ues in the heuristic were initialized as 1 and both players’ minimax searches
were one-ply for speed. Figure 4 shows the progress of one of the weights in
the heuristic function. The win-loss differential of the learner was tracked
over 25 games to see if the learner would start winning more and more as it
underwent the learning process. Figure 5 shows the progress of the learner’s
win-loss differential.

5 Conclusion

From the testing results it is clear that Temporal Difference learning is an
effective way to reach an evaluation function with equilibrium weights rela-
tively quickly and without the program requiring prior knowledge about chess
strategies. However, the accuracy of these weights is clearly questionable, as
Figure 5 shows a decline in performance as the weights become adjusted. It
is possible that given a longer run period, the weights would have become
better, however this is doubtful since Figure 4 shows that they were reach-
ing equilibrium status. It is also possible that had the program been run

8



Figure 4: The changing weights in the evaluation function.

at three-ply, the extra information of future boardstates would have yielded
better results. However, it is most likely that the bad weights were due to
human error in the learning or minimax algorithms. Beal and Smith used
a very similar learning algorithm which learned excellent weights that per-
formed better than the generally accepted weights of 1, 3, 3, 5 and 9 (for
pawns, knights, bishops, rooks and queens respectively) [3], so the discrep-
ancy between our results would be best explained by coding errors on my
part. Because of this, I have deemed this study’s efforts to have a program
learn how to play chess a failure.

Future research would include attempts to improve upon the learning
algorithm used in this study to achieve better weight results and to apply
the Temporal Difference learning algorithm to different domains, such as
other games like Othello and Go, or other problems that require searching
through large sets of data. Temporal Difference learning has a lot of potential
as a solution to many problems in the realm of Artificial Intelligence because
it is relatively fast and is not very memory-intensive. Further research with
TD learning would be very beneficial to the advancement of game-playing
and search techniques.

9



Figure 5: The win-loss differential of the machine learner over time.

References

[1] Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Modern Ap-
proach. Second Edition. 2003.

[2] Shannon, Claude E. “Programming a Computer for Playing Chess”.
1950.

[3] Beal, D.F. and Smith, M.C. “Temporal Difference Learning for Heuristic
Search and Game Playing”. 1999.

[4] Huang, Shiu-li and Lin, Fu-ren. “Using Temporal-Difference Learning
for Multi-Agent Bargaining”. 2007.

[5] Asgharbeygi, Nima, Stracuzzi, David and Langley, Pat.“Relational Tem-
poral Difference Learning”.

[6] Moriarty, David E. and Miikkulainen, Risto. “Discovering Complex Oth-
ello Strategies Through Evolutionary Neural Networks”.

10


