
The Implementation of Artificial Intelligence
and Machine Learning in a Computerized

Chess Program
by James Mannion

Computer Systems, 2008-2009
Period 3

Abstract
Computers have developed to the point where searching through
a large set of data to find an optimum value can be done in a
matter of seconds. However, there are still many domains
(primarily in the realm of game theory) that are too complex to
search through with brute force in a reasonable amount of time,
and so heuristic searches have been developed to reduce the run
time of such searches. That being said, some domains require
very complex heuristics in order to be effective. The purpose of
this study was to see if a computer could improve its heuristic as
it runs more searches. The domain used was the game of chess,
which has a very high complexity. The heuristic, or evaluation
function, of a chess program needs to be able to accurately
quantify the strength of a player’s position for any instance of
the board. Creating such an evaluation function would be very
difficult because there are so many factors that go into
determining the strength of a position: the relative value of
pieces, the importance of controlling the center, the ability to
attack the enemy’s stronger pieces – something that chess
masters spend entire lives trying to figure out. This study looked
to see if it was possible for a computer program to “learn” an
effective evaluation function by playing many games, analyzing
the results, and modifying its evaluation function accordingly.

Background
In 1950, Claude Shannon wrote a groundbreaking paper
called “Programming a Computer for Playing Chess.” It dealt
with various issues, such as how one might go about writing
an artificial intelligence program that could play chess well,
and what the evaluation of such a program might look like. It
discussed the problems involved with brute-force chess
algorithms and suggested an AI algorithm that a computer
chess program could use. It suggested using a 2-ply
algorithm (an algorithm that looks two turns into the future
before applying the evaluation function), however if the
program finds that a move could lead to a check or
checkmate, then it would investigate that move and
subsequent moves out to as many as 10 turns. At the end of
the paper, Shannon speculated about the possibility of
computer programs that can “learn,” but noted that such
developments were probably man years down the road.

About 50 years later in 1999, D.F. Beal and M.C. Smith
published a paper called “Temporal difference learning for
heuristic search and game playing.” At this point, programs
that could play chess had been well-developed, but research
in machine learning was really just beginning. The paper
investigated the use of Temporal Difference learning as a way
of making a computer chess program modify and improve its
evaluation function each time it plays. The researchers made
their chess program learn for 20,000 games, and then ran
their program against a program that had not learned its
evaluation function. The learned program
performeddecisively better over 2000 games than the
unlearned program, showing that it is indeed possible for
computers to improve their evaluation functions.

Development

References
Shannon, Claude E. “Programming a
Computer for Playing Chess.” 1950.
Beal, D.F. and Smith, M.C. “Temporal
Difference Learning for Heuristic Search
and Game Playing.” 1999

	Slide 1

