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Abstract
Computers have developed to the point where searching through 
a large set of data to find an optimum value can be done in a 
matter of seconds.  However, there are still many domains 
(primarily in the realm of game theory) that are too complex to 
search through with brute force in a reasonable amount of time, 
and so heuristic searches have been developed to reduce the run 
time of such searches.  That being said, some domains require 
very complex heuristics in order to be effective.  The purpose of 
this study was to see if a computer could improve its heuristic as 
it runs more searches.  The domain used was the game of chess, 
which has a very high complexity.  The heuristic, or evaluation 
function, of a chess program needs to be able to accurately 
quantify the strength of a player’s position for any instance of 
the board.  Creating such an evaluation function would be very 
difficult because there are so many factors that go into 
determining the strength of a position: the relative value of 
pieces, the importance of controlling the center, the ability to 
attack the enemy’s stronger pieces – something that chess 
masters spend entire lives trying to figure out.  This study looked 
to see if it was possible for a computer program to “learn” an 
effective evaluation function by playing many games, analyzing 
the results, and modifying its evaluation function accordingly.

Background
In 1950, Claude Shannon wrote a groundbreaking paper called 
“Programming a Computer for Playing Chess.”  It dealt with 
various issues, such as how one might go about writing an artificial 
intelligence program that could play chess well, and what the 
evaluation of such a program might look like.  It discussed the 
problems involved with brute-force chess algorithms and suggested 
an AI algorithm that a computer chess program could use.  It 
suggested using a 2-ply algorithm (an algorithm that looks two 
turns into the future before applying the evaluation function), 
however if the program finds that a move could lead to a check or 
checkmate, then it would investigate that move and subsequent 
moves out to as many as 10 turns.  At the end of the paper, 
Shannon speculated about the possibility of computer programs 
that can “learn,” but noted that such developments were probably 
man years down the road.

About 50 years later in 1999, D.F. Beal and M.C. Smith 
published a paper called “Temporal difference learning for heuristic 
search and game playing.”  At this point, programs that could play 
chess had been well-developed, but research in machine learning 
was really just beginning.  The paper investigated the use of 
Temporal Difference learning as a way of making a computer chess 
program modify and improve its evaluation function each time it 
plays.  The researchers made their chess program learn for 20,000 
games, and then ran their program against a program that had not 
learned its evaluation function.  The learned program 
performeddecisively better over 2000 games than the unlearned 
program, showing that it is indeed possible for computers to 
improve their evaluation functions.

Development
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The first stage of the program simply involved 
a console-based chess game where two humans 
could input their moves into the command line, 
and the board would be re-printed with the new 
move, as shown

Stage two of the project involved writing 
simple AI players.  The first AI player written 
was one that simply made a random legal 
move.  The next AI player written was simply a 
three-ply minimax search with alpha-beta 
pruning.  Its heuristic function was such that it 
would chose moves based on a simple piece 
differential, with each piece being weighted the 
same as every other piece, regardless of 
position on the board.  These two programs 
were created for the purpose of comparing the 
progress of a player with TD learning against a 
constant player over time.

Stage three introduced temporal difference 
learning.  TD learning compares predictions of 
future board states to actual values seen later 
on in the game and adjusts the weights of the 
heuristic function in order to make predictions 
made in later games closer to observed values.  
As more and more games are played, the 
weights of the heuristic function will improve 
and move toward equilibrium values.  The 
more in-game values that are observed, the 
more accurate and more effective these 
equilibrium values will become.
h = c1(p1) + c2(p2) + c3(p3) + c4(p4) + c5(p5)

pi = sum(wi) – sum(bi)

Testing/Analysis
The program with TD learning was run against a static 
program.  All weight values in the heuristic were 
initialized as 1.  The win-loss differential of the learner 
was tracked over 2,000 games to see if the learner 
would start winning more and more as it underwent the 
learning process.

The altered piece-square tables were analyzed 
after the learning session was complete to see if the 
program developed generally accepted strategies such 
as maintaining control of the center.  Higher numbers 
toward the center of the boards would indicate such a 
strategy.
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