
The Implementation of Artificial Intelligence
and Machine Learning in a Computerized

Chess Program
by James Mannion

Computer Systems, 2008-2009
Period 3

Abstract
Computers have developed to the point where searching through
a large set of data to find an optimum value can be done in a
matter of seconds. However, there are still many domains
(primarily in the realm of game theory) that are too complex to
search through with brute force in a reasonable amount of time,
and so heuristic searches have been developed to reduce the run
time of such searches. That being said, some domains require
very complex heuristics in order to be effective. The purpose of
this study was to see if a computer could improve its heuristic as
it runs more searches. The domain used was the game of chess,
which has a very high complexity. The heuristic, or evaluation
function, of a chess program needs to be able to accurately
quantify the strength of a player’s position for any instance of
the board. Creating such an evaluation function would be very
difficult because there are so many factors that go into
determining the strength of a position: the relative value of
pieces, the importance of controlling the center, the ability to
attack the enemy’s stronger pieces – something that chess
masters spend entire lives trying to figure out. This study looked
to see if it was possible for a computer program to “learn” an
effective evaluation function by playing many games, analyzing
the results, and modifying its evaluation function accordingly.

Background
In 1950, Claude Shannon wrote a groundbreaking paper called
“Programming a Computer for Playing Chess.” It dealt with
various issues, such as how one might go about writing an artificial
intelligence program that could play chess well, and what the
evaluation of such a program might look like. It discussed the
problems involved with brute-force chess algorithms and suggested
an AI algorithm that a computer chess program could use. It
suggested using a 2-ply algorithm (an algorithm that looks two
turns into the future before applying the evaluation function),
however if the program finds that a move could lead to a check or
checkmate, then it would investigate that move and subsequent
moves out to as many as 10 turns. At the end of the paper,
Shannon speculated about the possibility of computer programs
that can “learn,” but noted that such developments were probably
man years down the road.

About 50 years later in 1999, D.F. Beal and M.C. Smith
published a paper called “Temporal difference learning for heuristic
search and game playing.” At this point, programs that could play
chess had been well-developed, but research in machine learning
was really just beginning. The paper investigated the use of
Temporal Difference learning as a way of making a computer chess
program modify and improve its evaluation function each time it
plays. The researchers made their chess program learn for 20,000
games, and then ran their program against a program that had not
learned its evaluation function. The learned program
performeddecisively better over 2000 games than the unlearned
program, showing that it is indeed possible for computers to
improve their evaluation functions.

Development

References
Shannon, Claude E. “Programming a Computer for Playing Chess.” 1950.
Beal, D.F. and Smith, M.C. “Temporal Difference Learning for Heuristic
Search and Game Playing.” 1999
Moriarty, David E. and Miikkulainen, Risto. “Discovering Complex Othello
Strategies Through Evolutionary Neural Networks.”
Huang, Shiu-li and Lin, Fu-ren. “Using Temporal-Difference Learning for
Multi-Agent Bargaining.” 2007
Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Modern Approach.
Second Edition. 2003.

The first stage of the program simply involved
a console-based chess game where two humans
could input their moves into the command line,
and the board would be re-printed with the new
move, as shown

Stage two of the project involved writing
simple AI players. The first AI player written
was one that simply made a random legal
move. The next AI player written was simply a
three-ply minimax search with alpha-beta
pruning. Its heuristic function was such that it
would chose moves based on a simple piece
differential, with each piece being weighted the
same as every other piece, regardless of
position on the board. These two programs
were created for the purpose of comparing the
progress of a player with TD learning against a
constant player over time.

Stage three introduced temporal difference
learning. TD learning compares predictions of
future board states to actual values seen later
on in the game and adjusts the weights of the
heuristic function in order to make predictions
made in later games closer to observed values.
As more and more games are played, the
weights of the heuristic function will improve
and move toward equilibrium values. The
more in-game values that are observed, the
more accurate and more effective these
equilibrium values will become.
h = c1(p1) + c2(p2) + c3(p3) + c4(p4) + c5(p5)

pi = sum(wi) – sum(bi)

Testing/Analysis
The program with TD learning was run against a static
program. All weight values in the heuristic were
initialized as 1. The win-loss differential of the learner
was tracked over 2,000 games to see if the learner
would start winning more and more as it underwent the
learning process.

The altered piece-square tables were analyzed
after the learning session was complete to see if the
program developed generally accepted strategies such
as maintaining control of the center. Higher numbers
toward the center of the boards would indicate such a
strategy.

	Slide 1

