The Implementation of Artificial Intelligence
and Temporal Difference Learning Algorithms
in a Computerized Chess Program

James Patrick Mannion

Computer Systems Laboratory
Thomas Jefferson High School for Science and Technology

Alexandria, Virginia
2008-2009

Abstract

Computers have developed to the point where searching through
a large set of data to find an optimum value can be done in a matter
of seconds. However, there are still many domains (primarily in the
realm of game theory) that are too complex to search through with
brute force in a reasonable amount of time, and so heuristic searches
have been developed to reduce the run time of such searches. That
being said, some domains require very complex heuristics in order to
be effective. The purpose of this study was to see if a computer could
improve (or learn) its heuristic as it runs more searches. The domain
used was the game of chess, which has a very high complexity. The
heuristic, or evaluation function, of a chess program needs to be able
to accurately quantify the strength of a player’s position for any in-
stance of the board. Creating such an evaluation function would be
very difficult because there are so many factors that go into deter-
mining the strength of a position: the relative value of pieces, the
importance of controlling the center, the ability to attack the enemys
stronger pieces, something that chess masters spend entire lives trying
to figure out. This study looked to see if it was possible for a computer
program to “learn” an effective evaluation function by playing many
games and modifying its evaluation function to achieve better results.
The process by which the program improved its evaluation function is
called Temporal Difference learning, which does not require the pro-
gram to know anvthing about chess strategies before learning begins
and which looks at how changes in the heuristic function affect the
predicted strength of the outcomes of the current boardstate in order
to adjust the evaluation function appropriately. [1]

1 Development

Python was used to code this chess program. The early stages of the program
simply involved a console-based chess game where two humans could input
their moves into the command line, and the board would be re-printed with
the new move, as shown in Figure 1.

This program underwent numerous debugging sessions to make sure that
it would correctly handle illegal moves, checks, checkmates, castling, the
obscure en passant pawn capture, and other game play mechanics. For the
sake of simplicity, stalemates were called after 200 moves (100 turns) without

A program was then written that could do a minimax search to play
chess. It was then given temporal difference learning. TD learning compares
predictions of future board states to predictions seen later on in the game
and adjusts the weights of the heuristic function in order to make predictions
made in later games closer to observed values. As more and more games are
played, the weights w; will be modified in the following manner (similar to

3]):
w; — w; + a(F; — Pi_1)0u,, Piq (1)
a = ﬂ (2)
199 + ¢
1
P=i— (3)
h = Zlﬂé:ﬂé (4)
i=1
€Xr; = ‘}2 — k‘i (5)

Here, j; and k; are respectively the number of black and white pieces of type
i, a is a coefficient that decreases as more and more board states are seen by
the program, 9, F,;_; is the partial derivative of the predicted success rate
(which has been squished to a number between 0 and 1 from the evaluation
function h) with respect to the weight, { denotes a current timestep and

t — 1 denotes a previous value. If the current value is favored, the weight
will increase. If the previous value is favored, the weight will decrease. The
purpose of a is to make the weight change less and less as more games are
played so that the weight closes in on an equilibrium value over time.

2 Testing

The program with TD learning was run against the computer player de-
scribed above that used a simple piece-differential heuristic. All weight val-
ues in the heuristic were initialized as 1 and both players’ minimax searches
were one-ply for speed. Figure 2 shows the progress of one of the weights in
the heuristic function. The win-loss differential of the learner was tracked
over 25 games to see if the learner would start winning more and more as it
underwent the learning process. Figure 3 shows the progress of the learner’s

win-loss differential.

Change In Weights Over Time

win Percantage Over Time

checkmate.

Chess
a b ¢ d e f g h

| e e e e e e |

Blrinlblglklibinirl8
[T T it alatal et

fFlplplplplplplplpl
[Y et T P |

E1 1 °r 1 & L 1 | |

[mmmbm b |

T [| S [< N N (A

Win Perentage

Weight

g1 1 1 1 0 1 1 1 |

[el et et T P

sk < b ol BOEOE

Games Played

[s s et TRy

i

2

5
[e el s St D B

4

3

2

Figure 3: The win-loss differential of the machine learner over time.
-1

ZIPIPIPIPIPIPIPIPI

I + + ot ' 1 |
1IRINIBIQIKIBINIRIL

| . v v b e —— o } |

a b c d e £ g h
WHITE's Move

White Check? No

Black Check? Mo

Enter move (eg: ed4 &5) or "quit": a2 ad(]

Tums Taken (10 tums}

Figure 2: The changing weights in the evaluation funection.

3 Conclusion

From the testing results it is clear that Temporal Difference learning is an
effective way to reach an evaluation function with equilibrium weights rela-
tively quickly and without the program requiring prior knowledge about chess
strategies. However, the accuracy of these weights is clearly questionable, as
Figure 3 shows a decline in performance as the weights become adjusted. It
is most likely that the bad weights were due to human error in the learning
or minimax algorithms. Beal and Smith used a very similar learning algo-
rithm which learned weights that performed very well [3], so the discrepancy
between our results would be best explained by coding errors on my part.
Because of this, I have deemed this study’s efforts to have a program learn
how to play chess a failure. Future research would include attempts to im-
prove upon the learning algorithm used in this study to achieve better weight
results and to apply the Temporal Difference learning algorithm to different
domains.

Figure 1. The starting board, with white about to move a pawn.
References

[1] Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Modern Ap-
proach. Second Edition. 2003.

[2] Shannon, Claude E. “Programming a Computer for Playing Chess”.
1950.

[3] Beal, D.F. and Smith, M.C. “Temporal Difference Learning for Heuristic
Search and Game Playing”. 1999,

[4] Huang, Shiu-li and Lin, Fu-ren. “Using Temporal-Difference Learning
for Multi-Agent Bargaining”. 2007.

[5] Asgharbeygi, Nima, Stracuzzi, David and Langley, Pat. “Relational Tem-
poral Difference Learning”.

[6] Moriarty, David E. and Miikkulainen, Risto. “Discovering Complex Oth-
ello Strategies Through Evolutionary Neural Networks™.

	Slide 1

