
The Implementation of Machine Learning in the Game
of Checkers

William Melicher
Computer Systems Lab

Thomas Jefferson

March 12, 2009

Abstract

Most games have a set algorithm that
does not change. This means that these
programs cannot adapt to a situation or
learn from mistakes that it makes. However
if a machine could learn, then it could adapt
to new situations and would have a nearly
boundless skill level. Machine Learning
programs can be beaten once, but against an
opponent that does not change, it eventually
will be able to beat it. The project that I am
writing will learn how to play the game of
checkers as it plays, by modifying itself after
ever game played. It will review its play and
if it played well it will play that way more
often, if it did not it will avoid that way of
playing.

1 Introduction

The game of checkers has been weakly solved
by a computer program. The program gen-
erated every possible board combination and
simply uses a brute force method of search-
ing through these at every move. However
it would be nice to not require a super com-
puter to play the game of checkers. A Ma-
chine learning program would be able to play
at a high level of play without requiring huge
data bases or large amounts of processing
power for each move. The game of check-
ers has lower complexity level compared to
other games like othello, chess, go, and oth-
ers, but the use of machine learning in this
program can also be extended to those games
and other situations that require a learning
program.

The basic principle of machine Learning is
that the program can use past examples of
a situation to predict how an action will end
up in the future. So a machine learning pro-

1



gram would be able to continually adapt to
the circumstances that it is in. This type of
program would also be able to adjust its play
when it is playing an opponent that does not
change. The program needs to play games
to learn how to play, and more games would
give it more experience to learn how to play.
The program needs to play against itself to
get a large enough experience base to be able
to play well.

This research could be applied to any situ-
ation that requires quickly solving many sim-
ilar problems in succession. Any problem
where previous data can be used to predict a
future situation would benefit from a machine
learning algorithm. The program would take
the data from previous problems and the out-
come from those problems and then use it to
predict the outcome of a particular situation.

Checkers is a game that has many tacti-
cal aspects. The object is to remove all of
the opponents pieces by jumping them, and
avoiding loosing all of your own pieces. It is
necessary to block your opponents moves and
create situations where you can jump the op-
ponents checkers. You may only move for-
ward, until you reach the back of the board.
These pieces have much more power because
they can move in four directions and not just
two. Also the edge of the board is more defen-
sible than the middle of the board, because
pieces cannot jump over you. After making
a jump of a particular piece, if you can make
an additional jump, you may.

Figure 1: Here the selected gray piece can
double jump the two red pieces. After the
jump it will be on the back row which means
it will become a king.

2



2 Background

Most programs that play games today use a
search through a tree of moves and boards.
Each different possible move and the board
that would result from that move is evalu-
ated and when all of the boards have been
searched an evaluated; the program chooses
the move that results in the best outcome
quickest. This is called the minimax algo-
rithm. Each player wants to act in their own
interest, to either maximize or minimize an
evaluation function called a heuristic. The
heuristic determines which boards are good
and which ones are bad, without being able
to perfectly predict the results of the game.
The minimax algorithm looks at all of the
possible boards that can be reached from one
state and then looks at all the boards that
can be reached from another state, and so
on and so on. At some depth the algorithm
stops and then applies the evaluation func-
tion to determine the fitness of a board. At
each level, the player whose turn it is will
make the move that results in the best out-
come for them. This algorithm is limited
by two things, which are the depth of the
decision tree that it searches, and the qual-
ity of the heuristic function. However this
can become very costly in terms of time very
quickly. There is not enough time to search
through the entire decision tree for all but the
simplest games. The heuristic for each game
is different and a common form of a heuristic
is

H(s) = c0∗F0(s)+c1∗F1(s)++cn∗Fn(s) (1)

Where H(s) is the value of the board, Fi is

a feature of the particular board for example
a feature of a checkers game would be how
many checkers you have compared to your
opponent, and ci is the weight given to that
particular feature (2 Olsen). The play of the
AI increases in skill as you can more perfectly
predict the future states of the board. This
means having an AI that accurately describes
the position of the board and the minimax
algorithm can go to a large depth. Creating
a heuristic for a game generally requires an
expert and specially tailoring the heuristic to
its application.

This is why a learning program would be
useful. The program could learn its own eval-
uation function that would be more accu-
rate and with less work than having a static
function. One method of creating a learn-
ing program is to have the program learn by
rote. One program designed by De Jong and
Schultz (1) used an experience based that
the program would reference when it made
moves. The experience base stored all of
the boards encountered and the moves that
had been tried off of these boards. While
this is similar to creating all of the possi-
ble board combinations and simply search-
ing them exhaustively, this does not require
as much memory and is used in conjunction
with a static evaluation function. A different
method of creating a learning program is de-
scribed by Olsen (2), generalization learning.
The program modifies the heuristic function
each time it plays based on the outcome of
the play. The program starts with a heuristic
function that has all of the features weighted
equally. After the program plays a game, it
will change the values of the weights of the

3



heuristic function based on the outcome of
the game. This type of learning when imple-
mented in a program, generally played very
well during the middle game play, but less
well in beginning and end game play, while
the rote learning process played very well in
end game play.

3 Developement

I will use a combination of the learning by
rote algorithms and the generalization algo-
rithms. I will create a file and store all of
board combinations that have been seen and
the moves taken from that particular board. I
will then also use a changing heuristic to eval-
uate each board. The heuristic will also learn
based on the outcome of the game. Since the
capability of these methods changes based on
where in the game you are, I will attach more
weight onto the predictions of the learning by
rote method in the beginning and end game
and more weight to the generalization algo-
rithm during the middle game phase.

For the learning by generalization algo-
rithm I will use a temporal difference learner.
Temporal difference learning adjusts the eval-
uation function during play based on the dif-
ference between the evaluation function at
one point and the evaluation function at a
different time. This will bring the evaluation
function into a state of equilibrium toward
the ideal evaluation function. Every time an-
other move is made, the heuristic is changed
based on the previous heuristic. The equa-

tion for this is

U(s) < −− U(s) + a(R(s) + yU(s′)− U(s))
(2)

s is the current state of a system, U is the
evaluation function of state s, a is the learn-
ing coefficient and decreases as the number of
times state s has been encountered increases
and R is the reward that you will get for state
s.

References

[1] De Jong, Kenneth A. and Alan Schultz,
Using Experience-Based Learning in
Game Playing., 1998.

[2] Olsen, Daniel, Learning to Play Games
From Experience: An Application of Ar-
ticial Neural Networks and Temporal
DifferenceLearning. 1993.

[3] Norvig, Peter and Stuart Russel.
Artificial Intelligence, a Modern Approach.
New Jersey Pearson Education, 2003.

[4] Rich, Elaine and Kevin Knight.
Artificial Intelligence. New York Mc-
Graw1991.

4


