
The Implementation of Machine Learning in
Checkers

Abstract
Most games have a set algorithm that does not change. This means that these
programs cannot adapt to a situation or learn from mistakes that it makes.
However if a machine could learn, then it could adapt to new situations and
would have a nearly boundless skill level. Machine Learning programs can be
beaten once, but against an opponent that did not change, it eventually be able to
beat it. The project that I am writing will learn how to play the game of checkers
as it plays, by modifying itself after ever game played. It will review its play and
if it played well it will play that way more often, if it did not it will avoid that way
of playing.
Background

One method of creating a learning program is to have
the program learn by rote. An experience base stored all of the
boards encountered and the moves that had been tried off of
these boards. While this is similar to creating all of the possible
board combinations and simply searching them exhaustively,
this does not require as much memory and is used in
conjunction with a static evaluation function. A different
method of creating a learning program is described by Olsen
(2), generalization learning. The program modifies the heuristic
function each time it plays based on the outcome of the play.
The program starts with a heuristic function that has all of the
features weighted equally. After the program plays a game, it
will change the values of the weights of the heuristic function
based on the outcome of the game. This type of learning when
implemented in a program, generally played very well during
the middle game play, but less well in beginning and end game
play, while the rote learning process played very well in end
game play.

Development
For the learning by generalization algorithm I will use a temporal
difference learner. Temporal difference learning adjusts the evaluation
function during play based on the difference between the evaluation
function at one point and the evaluation function at a different time. This
will bring the evaluation function into a state of equilibrium toward the
ideal evaluation function. Every time another move is made, the heuristic
is changed based on the previous heuristic. The equation for this is U(s)
<-- U(s) + α(R(s) + γU(s') - U(s)). s is the current state of a system, U is
the evaluation function of state s, α is the learning coefficient and
decreases as the number of times state s has been encountered increases
and R is the reward that you will get for state s.
The learning by rote system that I am using also uses the minimax
algorithm. But instead of learning a better and better heuristic function, it
stores a set of boards that it has seen that are most probable to be played.
The program then uses this to increase the depth of the minimax search
because the time it takes to access a stored board is much less than the
time it takes to find all of the moves that can be made. This increases the
skill of the AI by increasing the number of turns the AI can look into the
future.
My program stores each board that was visited and the boards that can
be reached from that board. It does this by converting each board state
into a number. The number is a 32 digit number of base 5. There are 32
digits for each space on the board that a piece can be in, and base 5 for
each piece that can be there. Then the program maintains a hashmap of
the boards where a board is the key and each board that can be reached
from that board is the value. At the end of play, the program prints the
data out to a file for the next iteration of the program.

0 5 10 15 20 25

0

2

4

6

8

10

12

14

16

Value of Weight

ResultsResults
This graph shows the value of one of the terms of
the heuristic over the course of a game. This
weight is the weight attached to the value of
having more pieces than the other player. In the
beginning the AI had a large underestimate of the
value of the weight and increased it at an
increasing rate and then the weight was overshot
in the course of the game, so the program then
begins to lower the heurisitc by progressivelly less
amounts. The porject ed “optimal” value of this
wieght is somewhere around 10.

This is a copy of the output of the learning by rote file. On the left is a
board represented by the string of numbers. On the right of the colon is
the list of boards that can be reached from the original board.

0.5 1 1.5 2 2.5 3 3.5

0

20

40

60

80

100

120

Number of Boards in

Data Base

This graph shows the number of boards stored in the game database. You
can see at the beginning the database acrues a large amount of boards,
but as the game is played, the number of boards levels off. This is
because as you play more games, the probablility that you will see knew
games decreases. This decreases the returns of the learning by rote
process. This also requires large amounts of memory.

	Slide 1

