
The Implementation of Machine Learning in 
Checkers

Abstract
Most games have a set algorithm that does not change. This means that these 
programs cannot adapt to a situation or learn from mistakes that it makes. 
However if a machine could learn, then it could adapt to new situations and 
would have a nearly boundless skill level. Machine Learning programs can be 
beaten once, but against an opponent that did not change, it eventually be able to 
beat it. The project that I am writing will learn how to play the game of checkers 
as it plays, by modifying itself after ever game played. It will review its play and 
if it played well it will play that way more often, if it did not it will avoid that way 
of playing. 
Background

One method of creating a learning program is to have 
the program learn by rote. An experience base stored all of the 
boards encountered and the moves that had been tried off of 
these boards. While this is similar to creating all of the possible 
board combinations and simply searching them exhaustively, 
this does not require as much memory and is used in 
conjunction with a static evaluation function. A different 
method of creating a learning program is described by Olsen 
(2), generalization learning. The program modifies the heuristic 
function each time it plays based on the outcome of the play. 
The program starts with a heuristic function that has all of the 
features weighted equally. After the program plays a game, it 
will change the values of the weights of the heuristic function 
based on the outcome of the game. This type of learning when 
implemented in a program, generally played very well during 
the middle game play, but less well in beginning and end game 
play, while the rote learning process played very well in end 
game play.

Development
For the learning by generalization algorithm I will use a temporal 
difference learner. Temporal difference learning adjusts the evaluation 
function during play based on the difference between the evaluation 
function at one point and the evaluation function at a different time. This 
will bring the evaluation function into a state of equilibrium toward the 
ideal evaluation function. Every time another move is made, the heuristic 
is changed based on the previous heuristic. The equation for this is U(s) 
<-- U(s) + α( R(s) + γU(s') - U(s)). s is the current state of a system, U is 
the evaluation function of state s, α is the learning coefficient and 
decreases as the number of times state s has been encountered increases 
and R is the reward that you will get for state s. 
The learning by rote system that I am using also uses the minimax 
algorithm. But instead of learning a better and better heuristic function, it 
stores a set of boards that it has seen that are most probable to be played. 
The program then uses this to increase the depth of the minimax search 
because the time it takes to access a stored board is much less than the 
time it takes to find all of the moves that can be made. This increases the 
skill of the AI by increasing the number of turns the AI can look into the 
future. 
My program stores each board that was visited and the boards that can 
be reached from that board. It does this by converting  each board state 
into a number. The number is a 32 digit number of base 5. There are 32 
digits for each space on the board that a piece can be in, and base 5 for 
each piece that can be there. Then the program maintains a hashmap of 
the boards where a board is the key and each board that can be reached 
from that board is the value. At the end of play, the program prints the 
data out to a file for the next iteration of the program. 
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ResultsResults
This graph shows the value of one of the terms of 
the heuristic over the course of a game. This 
weight is the weight attached to the value of 
having more pieces than the other player. In the 
beginning the AI had a large underestimate of the 
value of the weight and increased it at an 
increasing rate and then the weight was overshot 
in the course of the game, so the program then 
begins to lower the heurisitc by progressivelly less 
amounts. The porject ed “optimal” value of this 
wieght is somewhere around 10.

This is a copy of the output of the learning by rote file. On the left is a 
board represented by the string of numbers. On the right of the colon is 
the list of boards that can be reached from the original board. 
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This graph shows the number of boards stored in the game database. You 
can see at the beginning the database acrues a large amount of boards, 
but as the game is played, the number of boards  levels off. This is 
because as you play more games, the probablility that you will see knew 
games decreases. This decreases the returns of the learning by rote 
process. This also requires large amounts of memory. 
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