
The Implementation of Machine Learning in
Checkers with Temporal Difference Learning

Billy Melicher Computer Systems 08-09

Abstract
 The project that I am writing will learn and improve
its strategy checkers as it plays, by modifying itself
after every game played. The AI will review its
performance, and if it played well it will play that
way more often. If it did not it will avoid that way of
playing.

Background
One method of creating a learning program is to
have the program learn by rote. An experience
database stores all of the boards encountered along
with the moves that had been tried off of these
boards. While this is similar to creating all of the
possible board combinations and simply searching
them exhaustively, this does not require as much
memory and is used in conjunction with a static
evaluation function. A different method of creating a
learning program is by the program modifing the
heuristic function each time it plays. The program
starts with a heuristic function that has all of the
features weighted equally. After the program plays a
game, it will change the values of the weights of the
heuristic function based on the outcome of the game.

�

Development
For the learning by generalization algorithm I use a temporal
difference learner. Temporal difference learning adjusts the
evaluation function during play based on the difference
between the evaluation function at one point and the
evaluation function at a different time. This will bring the
evaluation function into a state of equilibrium toward the
ideal evaluation function. Every time another move is made,
the heuristic is changed based on the previous heuristic. The
equation for this is U(s) <-- U(s) + α(R(s) + γU(s') - U(s)). s
is the current state of a system, U is the evaluation function
of state s, α is the learning coefficient and decreases as the
number of times state s has been encountered increases and
R is the reward that you will get for state s.
The learning by rote system that I am using is made so that I
can decrease α by the number of times that I have seen a
different board. My program stores each board that was
visited and the boards that can be reached from that board. It
does this by converting each board state into a number. The
number is a 32 digit number of base 5. There are 32 digits
for each space on the board that a piece can be in, and base 5
for each piece that can be there.

Results
This graph shows the value of the weights
of the heuristic over the course of a game.
In the beginning, the AI adjusted the
weights of the heuristic by a lot but as it
went on, they were changed less and less
and went the their equillibrium values.

This is a copy of the output of the learning by rote file. On
the left is a board represented by the string of numbers. On
the right of the colon is the list of boards that can be reached
from the original board.

0 5 10 15 20 25 30 35 40 45

0
2
4
6
8

10
12
14
16
18

coefficient
value 1
coefficient
value 2
coefficient
value 3

Conclusion
Temporal difference learning is a good way to achieve equilibrium value for the weights of the heuristic.
However sometimes the temporal difference learning requires the programmer's intervention on getting the
program away from a false minimum in the function. Temporal difference learning does not require large
amounts of memory like learning by rote. Also substantial learning could be achieved by having relatively few
iterations of temporal difference learning. Learning did not require that the program have knowledge of game
strategies, however it does require that the game move toward a win and be able to recognize a win.

	Slide 1

