
TJHSST Computer Systems Lab Senior
Research Project

Designing a Music Scripting Language
2008-2009

Casey Mihaloew

March 5, 2009

1

Abstract

The goal of this project is to create a scripting language that can
describe music and be compiled into various forms of displaying music.
There are four basic quantities that have to be dealt with in seperate
ways: pitch, volume, note length, and tone. There is also the problem
of defining these quantities for every note without having miles of
repetative text. This problem will be addressed by a unique method
that I call mapping that allows groups of commands to have common
pieces.

2

1 Introduction

The problem addressed in this project
is finding a way to describe music and
implement turning it into a sound file.
The language will cover basic notes
with rhythms and articulations. It
will take into account different instru-
ments as well as multiple of the same
instrument. It will eventually allow
continuous changes of certain factors
like pitch, volume, and tempo, known
as glissando, crescendo or diminuendo,
and accelerando or ritardando. Cur-
rently, it can recognize notes of dif-
ferent pitches and modifiers on the
pitches.

2 Background

There has been a lot of work done in
the area of computer music. A good
survey of early work on computer mu-
sic is Programming Languages for Com-
puter Music Synthesis, Performance,
and Composition, by Gareth Loy and
Curtis Abbott. The focus of this pa-
per is first to outline the various dif-
ficulties in designing a programming
language for music, then discuss sound
synthesis, and finally review many of
the languages already created up to
the time of publication (June 1985).
There had already been a lot of ad-
vances in this area by 1985 as it was
one of the earlier hard problems at-
tempted by computer scientists.

For those readers not completely
familiar with music, some basic terms
will need explanation. The tempo is
how fast the music is going and is typ-
ically measured in beats per minute
(bpm). An accelerando is when the
music gradually speeds up and a ri-
tardando or rallentando is when the
music slows down. The pitch is what
frequency the note vibrates at, a higher
frequency equating to a higher pitch.
An interval is a ratio of frequencies,
specifically an octave is 2:1. A glis-
sando is when the pitch changes grad-
ually. Volume is how loud the music
is, with forte meaning loud and pi-
ano meaning soft. A crescendo is a
gradual increase in volume while a de-
crescendo or diminuendo is a decrease
in volume. There are also modifiers
to notes that change one or more of
the parameters, such as accents, acci-
dentals, and other articualtions.

3 Development

3.1 Formulating Syntax

The fist problem that was dealt with
was how to keep the language con-
cise. With four parameters for each
note in addition to modifiers, describ-
ing each note and all of its aspects
could yield a long and unwieldy text
file. The solution that I came up with
is mapping. the easiest way to de-
scribe what mapping does is to give

3

an example. The line ”([C2:1], [C2:1],
[C2:1], [C2:1]) (staccato, tenuto)” un-
der mapping will turn into ”([C2:1]
staccato, [C2:1] tenuto, [C2:1] stac-
cato, [C2:1] tenuto)”. This loops over
all of the items in the first list and
appends it to the corresponding item
in the second list. If either list runs
out of items, it starts over from the
beginning of that list. It keeps go-
ing until the longer of the two lists is
completed. This, once the program is
completed, should drastically reduce
the number of lines that one needs to
type in order to describe the whole
piece of music. In order to have two
lists that don’t map, currently I use
curly brackets to encompass a specific
need of mapping.

3.2 Sample Program

{import tempos}

{import volumes}

{def $i (tuba,trumpet,horn)}

{(initInstr)ii}

{$i(noteType basic)}

{$i(timeSignature 4:4)}

{$i(tempo $allegro)}

{$i(volume $forte)}

{$i(test)}

{(tuba,trumpet,horn)(

([C2:1/2],[D2:7/2]),

([C4:1],[B3:3]),

([G3:4] tenuto),

([C2:3],[D2:1]),

([E4:2],[G4:2]),

([F3:1],[E3:1],[D3:1],[C3:1])

)}

{$i(play)}

3.3 Hierarchy

The design of the classes in this object-
oriented project is one of the integral
parts. The whole program is run by
the driver, as is typical. The driver
reads in a file and sends it to the parser
which returns a list of commands. The
driver then reads through the com-
mands to see what it needs to do.
As it goes through a proper file, it
will create Instruments in a Hash Ta-
ble. The instruments in turn keep
track of an array list of Notes, as well
as certain other parameters such as
tempo, volume, time signature (class
TimeSignature), and how to parse the
notes, stored in the NoteInterpreter
class. The note keeps track of what
instrument it is played on, its volume,
length, tempo, and pitch. The pitch
is stored in the Pitch class, which keeps
track of the name of the note and fre-
quency. Various key parameters (both
parts of the key signature, duration
of notes) could be stored as a dou-
ble, but more exactness can be had
by storing them in a Rational class
that was written for this project, in-
volving adding and multiplying with
stored numerators and denominators.

4

3.4 Parsing

The current parsing does not work
perfectly. It makes an array of com-
mands to be parsed. For each com-
mand, it turns the nested parenthe-
ses into an arbitrary depth array. It
then expands the mapping. The er-
ror in this way is that there is some-
times no difference between ”)(” and
”,” and so it doesn’t map things that
should be done. Fixing this is still an
open problem for me.

3.5 Testing

The output of my program is as fol-
lows.

initInstr,tuba,tuba,

initInstr,trumpet,trumpet,

initInstr,horn,horn,

tuba,noteType,basic,

trumpet,noteType,basic,

horn,noteType,basic,

tuba,timeSignature,4:4,

trumpet,timeSignature,4:4,

horn,timeSignature,4:4,

tuba,tempo,120,

trumpet,tempo,120,

horn,tempo,120,

tuba,volume,0.6,

trumpet,volume,0.6,

horn,volume,0.6,

tuba,test,

trumpet,test,

horn,test,

tuba,[C2:1/2],

tuba,[D2:7/2],

trumpet,[C4:1],

trumpet,[B3:3],

horn,[G3:4],tenuto,

tuba,[C2:3],

tuba,[D2:1],

trumpet,[E4:2],

trumpet,[G4:2],

horn,[F3:1],

horn,[E3:1],

horn,[D3:1],

horn,[C3:1],

tuba,play,

trumpet,play,

horn,play,

tuba ins. tempo: 120.0. volume: 0.6. time signature: 4 4

trumpet ins. tempo: 120.0. volume: 0.6. time signature: 4 4

horn ins. tempo: 120.0. volume: 0.6. time signature: 4 4

tuba ins. Start: 0.0 . Stop: 0.25 for note 1/2 counts of C2(65.40639132514966)

tuba ins. Start: 0.25 . Stop: 2.0 for note 7/2 counts of D2(73.4161919793519)

tuba ins. Start: 2.0 . Stop: 3.5 for note 3 counts of C2(65.40639132514966)

tuba ins. Start: 3.5 . Stop: 4.0 for note 1 counts of D2(73.4161919793519)

trumpet ins. Start: 0.0 . Stop: 0.5 for note 1 counts of C4(261.6255653005986)

trumpet ins. Start: 0.5 . Stop: 2.0 for note 3 counts of B3(246.94165062806206)

trumpet ins. Start: 2.0 . Stop: 3.0 for note 2 counts of E4(329.6275569128699)

trumpet ins. Start: 3.0 . Stop: 4.0 for note 2 counts of G4(391.99543598174927)

horn ins. Start: 0.0 . Stop: 2.0 for note 4 counts of G3(195.99771799087463) tenuto

horn ins. Start: 2.0 . Stop: 2.5 for note 1 counts of F3(174.61411571650194)

horn ins. Start: 2.5 . Stop: 3.0 for note 1 counts of E3(164.81377845643496)

horn ins. Start: 3.0 . Stop: 3.5 for note 1 counts of D3(146.8323839587038)

horn ins. Start: 3.5 . Stop: 4.0 for note 1 counts of C3(130.8127826502993)

The first section of output has the parsed
program. The second section describes
all of the notes recorded by each instru-
ment as well as when the notes start and
stop. A picture of the wave generated
follows.

5

3.6 Sound

I went about generating sound by a method
known as additive synthesis. Using this,
generating sound involves adding several
different frequencies of sine waves to cre-
ate a single instrument sound. All of
these sounds are then added together to
create the final piece of music. In a typ-
ical instrumental sound, like a wind or
string instrument, there are a series of
harmonics generated at frequencies twice,
thrice, four times, and so on of the fun-
damental frequency. The various ratios
of the magnitudes of these harmonics
are what makes a clarinet sound differ-
ent from a trumpet or cello. Currently,
I only use the fundamental frequency.
The next step is to add tone to the notes.
Currently, the method that I use for the
sound generation is to have a Sound class
that stores an array of doubles that rep-
resent the amplitude of the note at that
specific position in time. I instantiate a
Sound for each Note and then add them
together using a method in the Sound
class. This works, but the overhead for
creating all of those arrays causes the
program to run slower than I would hope,
taking around ten percent of the final
length of the sound file. This can be im-
proved, instantiating a sound for only
each instrument and creating a method
in the Note class that adds itself to an
existing sound. This should speed up
the compiling process significantly.
There are some nuances that I have im-
plemented in the sound generation. I
started with making the sound length
different for different articulations. For

tenuto, the note takes up one hundred
percent of the time allotted for the note.
For a normal note, it takes up ninety
percent of the time allotted. For a stac-
catto note, the sound only takes up fifty
percent of the time allotted. Even with
this, there was a strange click as the note
ended, so I tapered the end of the note
off to zero. This involved linearly decay-
ing the last quarter of the note from the
full volume to zero. This eliminated the
click and made it sound more human.
This could still be improved by having a
more continuous decay and using more
different methods for different articula-
tions.

4 End Matter

The goal of this project is to create a
scripting language that can describe mu-
sic and be compiled into various forms
of displaying music. There are four ba-
sic quantities that have to be dealt with
in seperate ways: pitch, volume, note
length, and tone. There is also the prob-
lem of defining these quantities for every
note without having miles of repetative
text. This problem will be addressed
by a unique method that I call mapping
that allows groups of commands to have
common pieces. I will also demonstrate
the use of this language by generating
sound.

The result of this project will be an
easy way of turning a text file into a
sound file. It can be used by other re-
searchers as a basis for any music gener-
ation or analysis project.

6

5 Literature Cited

Lloy, Gareth, and Curtis Abbott. Programming languages for computer music syn-
thesis, performance, and composition . ACM , 1985. 31 Oct. 2008 ¡http://portal.acm.org/
citation.cfm?id=4468.4485coll=Portaldl=ACMCFID=8612290CFTOKEN=77807504¿.

7

