
TJHSST Computer Systems Lab Senior
Research Project

Designing a Music Scripting Language
2008-2009

Casey Mihaloew

January 22, 2009

1

Abstract

The goal of this project is to create a scripting language that can
describe music and be compiled into various forms of displaying music.
There are four basic quantities that have to be dealt with in seperate
ways: pitch, volume, note length, and tone. There is also the problem
of defining these quantities for every note without having miles of
repetative text. This problem will be addressed by a unique method
that I call mapping that allows groups of commands to have common
pieces.

1 Introduction

The problem addressed in this project is finding a way to describe music
and implement turning it into a sound file. The language will cover basic
notes with rhythms and articulations. It will take into account different
instruments as well as multiple of the same instrument. It will eventually
allow continuous changes of certain factors like pitch, volume, and tempo,
known as glissando, crescendo or diminuendo, and accelerando or ritardando.
Currently, it can recognize notes of different pitches and modifiers on the
pitches.

2 Background

There has been a lot of work done in the area of computer music. A good
survey of early work on computer music is Programming Languages for
Computer Music Synthesis, Performance, and Composition, by Gareth Loy
and Curtis Abbott. The focus of this paper is first to outline the various dif-
ficulties in designing a programming language for music, then discuss sound
synthesis, and finally review many of the languages already created up to the
time of publication (June 1985). There had already been a lot of advances
in this area by 1985 as it was one of the earlier hard problems attempted by
computer scientists.

For those readers not completely familiar with music, some basic terms
will need explanation. The tempo is how fast the music is going and is
typically measured in beats per minute (bpm). An accelerando is when the
music gradually speeds up and a ritardando or rallentando is when the music
slows down. The pitch is what frequency the note vibrates at, a higher

2

frequency equating to a higher pitch. An interval is a ratio of frequencies,
specifically an octave is 2:1. A glissando is when the pitch changes gradually.
Volume is how loud the music is, with forte meaning loud and piano meaning
soft. A crescendo is a gradual increase in volume while a decrescendo or
diminuendo is a decrease in volume. There are also modifiers to notes that
change one or more of the parameters, such as accents, accidentals, and other
articualtions.

3 Development

3.1 Formulating Syntax

The fist problem that was dealt with was how to keep the language concise.
With four parameters for each note in addition to modifiers, describing each
note and all of its aspects could yield a long and unwieldy text file. The so-
lution that I came up with is mapping. the easiest way to describe what map-
ping does is to give an example. The line ”([C2:1],[C2:1],[C2:1],[C2:1])(staccato,
tenuto)” under mapping will turn into ”([C2:1] staccato,[C2:1] tenuto,[C2:1]
staccato,[C2:1] tenuto)”. This loops over all of the items in the first list and
appends it to the corresponding item in the second list. If either list runs out
of items, it starts over from the beginning of that list. It keeps going until
the longer of the two lists is completed. This, once the program is completed,
should drastically reduce the number of lines that one needs to type in order
to describe the whole piece of music. In order to have two lists that don’t
map, currently I use curly brackets to encompass a specific need of mapping.

3.2 Sample Program

import tempos
import volumes
def i(tuba, trumpet, horn)
(initInstr)ii
i(noteType basic)
i(timeSignature4 : 4)
i(tempo allegro)
i(volume forte)
i(test)

3

(tuba,trumpet,horn)(
([C2:1/2],[D2:7/2]),
([C4:1],[B3:3]),
([G3:4] tenuto),

([C2:3],[D2:1]),
([E4:2],[G4:2]),
([F3:1],[E3:1],[D3:1],[C3:1])
)
i(play)

3.3 Hierarchy

The design of the classes in this object-oriented project is one of the integral
parts. The whole program is run by the driver, as is typical. The driver reads
in a file and sends it to the parser which returns a list of commands. The
driver then reads through the commands to see what it needs to do. As it
goes through a proper file, it will create Instruments in a Hash Table. The in-
struments in turn keep track of an array list of Notes, as well as certain other
parameters such as tempo, volume, time signature (class TimeSignature),
and how to parse the notes, stored in the NoteInterpreter class. The note
keeps track of what instrument it is played on, its volume, length, tempo,
and pitch. The pitch is stored in the Pitch class, which keeps track of the
name of the note and frequency. Various key parameters (both parts of the
key signature, duration of notes) could be stored as a double, but more ex-
actness can be had by storing them in a Rational class that was written for
this project, involving adding and multiplying with stored numerators and
denominators.

3.4 Parsing

The current parsing does not work perfectly. It makes an array of commands
to be parsed. For each command, it turns the nested parentheses into an
arbitrary depth array. It then expands the mapping. The error in this way is
that there is sometimes no difference between)(and , and so it doesnt map
things that should be done. Fixing this is still an open problem for me.

4

3.5 Testing

The output of my program is as follows.
initInstr,tuba,tuba,
initInstr,trumpet,trumpet,
initInstr,horn,horn,
tuba,noteType,basic,
trumpet,noteType,basic,
horn,noteType,basic,
tuba,timeSignature,4:4,
trumpet,timeSignature,4:4,
horn,timeSignature,4:4,
tuba,tempo,120,
trumpet,tempo,120,
horn,tempo,120,
tuba,volume,0.6,
trumpet,volume,0.6,
horn,volume,0.6,
tuba,test,
trumpet,test,
horn,test,
tuba,[C2:1/2],
tuba,[D2:7/2],
trumpet,[C4:1],
trumpet,[B3:3],
horn,[G3:4],tenuto,
tuba,[C2:3],
tuba,[D2:1],
trumpet,[E4:2],
trumpet,[G4:2],
horn,[F3:1],
horn,[E3:1],
horn,[D3:1],
horn,[C3:1],
tuba,play,
trumpet,play,
horn,play,
tuba ins. tempo: 120.0. volume: 0.6. time signature: 4 4

5

trumpet ins. tempo: 120.0. volume: 0.6. time signature: 4 4
horn ins. tempo: 120.0. volume: 0.6. time signature: 4 4
tuba ins. Start: 0.0 . Stop: 0.25 for note 1/2 counts of C2(65.40639132514966)
tuba ins. Start: 0.25 . Stop: 2.0 for note 7/2 counts of D2(73.4161919793519)
tuba ins. Start: 2.0 . Stop: 3.5 for note 3 counts of C2(65.40639132514966)
tuba ins. Start: 3.5 . Stop: 4.0 for note 1 counts of D2(73.4161919793519)
trumpet ins. Start: 0.0 . Stop: 0.5 for note 1 counts of C4(261.6255653005986)
trumpet ins. Start: 0.5 . Stop: 2.0 for note 3 counts of B3(246.94165062806206)
trumpet ins. Start: 2.0 . Stop: 3.0 for note 2 counts of E4(329.6275569128699)
trumpet ins. Start: 3.0 . Stop: 4.0 for note 2 counts of G4(391.99543598174927)
horn ins. Start: 0.0 . Stop: 2.0 for note 4 counts of G3(195.99771799087463)
tenuto
horn ins. Start: 2.0 . Stop: 2.5 for note 1 counts of F3(174.61411571650194)
horn ins. Start: 2.5 . Stop: 3.0 for note 1 counts of E3(164.81377845643496)
horn ins. Start: 3.0 . Stop: 3.5 for note 1 counts of D3(146.8323839587038)
horn ins. Start: 3.5 . Stop: 4.0 for note 1 counts of C3(130.8127826502993)
The first section of output has the parsed program. The second section de-
scribes all of the notes recorded by each instrument as well as when the notes
start and stop.

3.6 Sound

I went about generating sound by a method known as additive synthesis.
Using this, generating sound involves adding several different frequencies of
sine waves to create a single instrument sound. All of these sounds are then
added together to create the final piece of music. In a typical instrumental
sound, like a wind or string instrument, there are a series of harmonics gen-
erated at frequencies twice, thrice, four times, and so on of the fundamental
frequency. The various ratios of the magnitudes of these harmonics are what
makes a clarinet sound different from a trumpet or cello. Currently, I only
use the fundamental frequency. The next step is to add tone to the notes.
Currently, the method that I use for the sound generation is to have a Sound
class that stores an array of doubles that represent the amplitude of the note
at that specific position in time. I instantiate a Sound for each Note and
then add them together using a method in the Sound class. This works, but
the overhead for creating all of those arrays causes the program to run slower
than I would hope, taking around ten percent of the final length of the sound
file. This can be improved, instantiating a sound for only each instrument

6

and creating a method in the Note class that adds itself to an existing sound.
This should speed up the compiling process significantly.
There are some nuances that I have implemented in the sound generation.
I started with making the sound length different for different articulations.
For tenuto, the note takes up one hundred percent of the time allotted for
the note. For a normal note, it takes up ninety percent of the time allot-
ted. For a staccatto note, the sound only takes up fifty percent of the time
allotted. Even with this, there was a strange click as the note ended, so I
tapered the end of the note off to zero. This involved linearly decaying the
last quarter of the note from the full volume to zero. This eliminated the
click and made it sound more human. This could still be improved by hav-
ing a more continuous decay and using more different methods for different
articulations.

4 End Matter

The goal of this project is to create a scripting language that can describe
music and be compiled into various forms of displaying music. There are four
basic quantities that have to be dealt with in seperate ways: pitch, volume,
note length, and tone. There is also the problem of defining these quantities
for every note without having miles of repetative text. This problem will
be addressed by a unique method that I call mapping that allows groups of
commands to have common pieces. I will also demonstrate the use of this
language by generating sound.

The result of this project will be an easy way of turning a text file into
a sound file. It can be used by other researchers as a basis for any music
generation or analysis project.

5 Literature Cited

Lloy, Gareth, and Curtis Abbott. Programming languages for computer mu-
sic synthesis, performance, and composition . ACM , 1985. 31 Oct. 2008
¡http://portal.acm.org/ citation.cfm?id=4468.4485coll=Portaldl=ACMCFID=8612290CFTOKEN=77807504¿.

7

