
Designing a Music Scripting Language
Casey Mihaloew

2008-2009 TJHSST Computer Systems Lab

Abstract:
The problem addressed in this project is finding a
way to describe music and implement turning it into
a sound file. The language will cover basic notes
with rhythms and articulations. It will take into
account different instruments as well as multiple of
the same instrument and allow continuous changes
of certain factors like pitch, volume, and tempo,
known as glissando, crescendo or diminuendo, and
accelerando or ritardando. Currently, notes of
different pitches and modifiers on the pitches can be
recognized. An additional goal will be to expand it
to include transposing and other computational
music theory functionality.

Background:
There has been a lot of work done in the area of
computer music. A good survey of early work on
computer music is Programming Languages for
Computer Music Synthesis, Performance, and
Composition, by Gareth Loy and Curtis Abbott. The
focus of this paper is first to outline the various
difficulties in designing a programming language for
music, then discuss sound synthesis, and finally
review many of the languages already created up to
the time of publication (June 1985). There had
already been a lot of advances in this area by 1985
as it was one of the earlier hard problems attempted
by computer scientists.

For those readers not completely familiar with music,
some basic terms will need explanation. The tempo is
how fast the music is going and is typically measured
in beats per minute (bpm). An accelerando is when
the music gradually speeds up and a ritardando or
rallentando is when the music slows down. The pitch
is what frequency the note vibrates at, a higher
frequency equating to a higher pitch. An interval is a
ratio of frequencies, specifically an octave is 2:1. A
glissando is when the pitch changes gradually.
Volume is how loud the music is, with forte meaning
loud and piano meaning soft. A crescendo is a
gradual increase in volume while a decrescendo or
diminuendo is a decrease in volume. There are also
modifiers to notes that change one or more of the
parameters, such as accents, accidentals, and other
articualtions.

Procedures and Methods:
The first problem that was dealt with was how to keep the language concise. With four parameters for
each note in addition to modifiers, describing each note and all of its aspects could yield a long and
unwieldy text file. The solution that I came up with is mapping, which can be described by an example. As
an example of mapping, the line "([C2:1],[C2:1],[C2:1],[C2:1])(staccato, tenuto)" under mapping will turn
into "([C2:1] staccato,[C2:1] tenuto,[C2:1] staccato,[C2:1] tenuto)". This loops over all of the items in the
first list and appends it to the corresponding item in the second list. If either list runs out of items, it starts
over from the beginning of that list. It keeps going until the longer of the two lists is completed. This, once
the program is completed, should drastically reduce the number of lines that one needs to type in order to
describe the whole piece of music. In order to have two lists that don't map, currently I use curly brackets
to encompass a specific need of mapping.

The design of the classes in this object-oriented project is one of the integral parts. The whole program is
run by the driver, as is typical. The driver reads in a file and sends the contents to the parser which
returns a list of commands. The driver then reads through the commands and excecute them. As the
driver goes through a proper file, it will create Instruments in a Hash Table. The instruments in turn keep
track of an array list of Notes, as well as certain other parameters such as tempo, volume, time signature
(class TimeSignature). The note keeps track of what instrument it is played on, its volume, length, tempo,
and pitch. The note also stores this pitch symbolically and has some methods for computational music
theory like transposition by an Interval. All of the volume, pitch, and tempi are stored in a Parameter class,
which has a duration and a Function. The function can be of various types to take care of constant
functions or glissandos/accelerandos/decrescendos. Various key parameters (both parts of the key
signature, duration of notes) could be stored as a double, but more exactness can be had by storing them
in a Rational class that was written for this project, involving adding and multiplying with stored
numerators and denominators.

I went about generating sound by a method known as additive synthesis. Using this, generating sound
involves adding several different frequencies of sine waves to create a single instrument sound. All of
these sounds are then added together to create the final piece of music. In a typical instrumental sound,
like a wind or string instrument, there are a series of harmonics generated at frequencies twice, thrice,
four times, and so on of the fundamental frequency. The various ratios of the magnitudes of these
harmonics are what makes a clarinet sound different from a trumpet or cello. Currently, I only use the
fundamental frequency. The next step is to add tone to the notes.

The first section of output has the parsed program. The second section describes all of the notes
recorded by each instrument as well as when the notes start and stop.

Results:
Some sample outputs are given above and to the left. The samples to the left are a sample script to input
into my program and then a sample output describing the notes. As sound is hard to put on a poster,
above is a picture of the wave generated. In summary, the project was sucessful, but has lots of room for
expansion.

Sample Program

{import tempos}
{import volumes}
{def $i (tuba,trumpet,horn)}
{(initInstr)ii}
{$i(noteType basic)}
{$i(timeSignature 4:4)}
{$i(tempo $allegro)}
{$i(volume $forte)}
{$i(test)}
{(tuba,trumpet,horn)(
([C2:1/2],[D2:7/2]),
([C4:1],[B3:3]),
([G3:4] tenuto),

([C2:3],[D2:1]),
([E4:2],[G4:2]),
([F3:1],[E3:1],[D3:1],[C3:1])
)}
{$i(play)}

Sample Output

initInstr,tuba,tuba,
…
horn,play,
tuba ins. tempo: 120.0. volume: 0.6. time signature: 4 4
trumpet ins. tempo: 120.0. volume: 0.6. time signature: 4 4
…
trumpet ins. Start: 2.0 . Stop: 3.0 for note 2 counts of E4(329.6275569128699)
trumpet ins. Start: 3.0 . Stop: 4.0 for note 2 counts of G4(391.99543598174927)
horn ins. Start: 0.0 . Stop: 2.0 for note 4 counts of G3(195.99771799087463) tenuto
horn ins. Start: 2.0 . Stop: 2.5 for note 1 counts of F3(174.61411571650194)
horn ins. Start: 2.5 . Stop: 3.0 for note 1 counts of E3(164.81377845643496)
horn ins. Start: 3.0 . Stop: 3.5 for note 1 counts of D3(146.8323839587038)
horn ins. Start: 3.5 . Stop: 4.0 for note 1 counts of C3(130.8127826502993)

	Slide 1

