Project Description

Student: Casey Mihaloew

Title: Music Scripting Language

Background:

There has been a lot of work done in the area of computer music. A good survey of early work on computer music is Programming Languages for Computer Music Synthesis, Performance, and Composition, by Gareth Loy and Curtis Abbott. The focus of this paper is first to outline the various difficulties in designing a programming language for music, then discuss sound synthesis, and finally review many of the languages already created up to the time of publication (June 1985). There had already been a lot of advances in this area by 1985 as it was one of the earlier hard problems attempted by computer scientists.

Description:

The goal of this project is to create a scripting language that can describe music and be compiled into various forms of displaying music. There are four basic quantities that have to be dealt with in seperate ways: pitch, volume, note length, and tone. There is also the problem of defining these quantities for every note without having miles of repetative text. This problem will be addressed by a unique method that I call mapping that allows groups of commands to have common pieces. An additional goal will be to expand it to include transposing and other computational music theory functionality.

The design of the classes in this object-oriented project is one of the integral parts. The whole program is run by the driver, as is typical. The driver reads in a file and sends it to the parser which returns a list of commands. The driver then reads through the commands to see what it needs to do. As it goes through a proper file, it will create Parts in a Hash Table. The instruments in turn keep track of a DurationList of Notes, as well as certain other parameters such as tempo, volume, time signature (class TimeSignature). A DurationList is a special data type that stores sub classes of the abstract class Duration. It can iterate through the Durations one at a time or by an increment of number of beats. The note keeps track of what instrument it is played on, its volume, length, tempo, and pitch. It also stores this pitch symbolically and has some methods for computational music theory like transposition by an Interval. All of the volume, pitch, and tempi are stored in a Parameter class, which has a duration and a Function. The function can be of various types to take care of constant functions or glissandos/accelerandos/decrescendos or any fantastical function you want (such as random). Various key parameters (both parts of the key signature, duration of notes) could be stored as a double, but more exactness can be had by storing them in a Rational class that was written for this project, involving adding and multiplying with stored numerators and denominators.

The sound generation method is to have one sound for each instrument. I increment time by one over the sample rate, then get the tempo to find out how many beats this translates to. From that I can increment the functions attached to the pitch, volume, and tempo (often time doing nothing). The way to figure out what note can be done by keeping a precomputed array in the instrument class. Once those key parameters are calculated, the instrument will have a SoundType class that can generate the magnitude of the sound wave at that point, via a sum of sine waves or any other method required. This neglects to create an absurd number of arrays, but still has the relative slowness of additive synthesis. For the purposes of the project, it should be fine.

