
Solving the Vehicle Routing Problem with
Multiple Multi-Capacity Vehicles

Michael S. Sanders, Jr.
Computer Systems Lab, 2008-2009

Thomas Jefferson High School for Science and Technology
Alexandria, Virginia

June 9, 2009

Abstract

The Vehicle Routing Problem (VRP) has existed as long as a dis-
tributor has needed to deliver items. As such, the VRP has been
solved with many different methods, including agent architecture
and ant colony modeling. However, these methods have generally
been set up for an established organization that has a specific num-
ber of vehicles with only a few unique capacities. This project aims to
create a program that will solve the VRP, but in a case where all the
vehicles could have different capacities. This is the situation faced
by some volunteer groups that do not have established vehicle fleets
and rely on people volunteering vehicles when something needs to
be distributed.

Keywords: Vehicle Routing Problem, heuristics, genetic algorithms

1 Introduction

The goal of this project is to create a program to quickly find the most
efficient routing of a given number of vehicles with differing capacities to
a variety of delivery points with a variety of demands of product. This is

1



a majority applied research project. It is being created to assist a volunteer
group in their distribution of goods.

The project is created linearly. The first step is the creation of a route
finder, which includes the locating and processing of road data. The route
finder is built upon through the addition of a heuristic algorithm to de-
crease the time required to find a route. The second major step is then
to create a solution finder. The solution finder will implement another
heuristic algorithm to determine a very good route. Neither the route
finder or solution finder will be expected to routinely return the best re-
sults, given the scope of the problem. It is expected that this deficiency
will be compensated for by human intuition, as the drivers of the vehicles
can be expected to be familiar with the area road network.

2 Background

A great deal of research has been done into the VRP and its variants, such
as the VRP with Time Windows (VRPTW) and Multi-Depot VRP (MD-
VRP). Projects have looked into using agent architecture and ant colony
optimization to solve the problems. These projects have yielded such ideas
as Clarke-Wright Algorithm to place delivery points into routes. Mennell,
Shmygelska, and Thangiah did a project to evaluate using agents to solve
the VRP. The program used agents to represent the vehicles and “auction-
eers” that informed the vehicles of the current situation with regards to
customers and deliveries. While the resulting program did not find the
optimal solutions for any the sample problems, it was extremely adapt-
able for the MDVRP and VRP with multi-capacity vehicles.

3 Development

The project has two major components: the route finder and the solution
finder.

3.1 Route Finder

The route finder was ultimately unsuccessful. However, it did result in
insights as to challenges with desiging route finding software.

2



3.2 Route Finder Development

The route finder began as an extension of an assignment from a previ-
ous computer science course. Unfortuntely, due to data reliability issues,
the route finder could not be programmed as intended. Data was ob-
tained from the US Census Bureau’s 2006 TigerLINE road database. An A*
search was utilized for the attempted program. The program could par-
tially function, but repeated searches would result in the program ceasing
to function.

3.2.1 A* Search

The route finder implements an A* search for finding a route. After iden-
tifying the starting and ending points, the program then begins to iterate
through paths. A path is an array containing a list of all the geographic co-
ordinates that that path has passed through. The program then determines
what streets intersect at the path’s current location. It then assembles new
paths by copying the current path and adding on each intersecting street.
The program then determines how long each path is (how far the path has
traveled from the starting point) and estimates how much farther the path
has to go before it reaches the target. Once it has created all the new paths,
the program sorts all the paths based on estimated total length.

The goal of the A* search is to reduce time used for searching by iden-
tifying the paths that are most likely to be the shortest routes. There are
limitations, however. The A* search that was programmed estimated the
remaining distance to the destination through the distance formula using
latitude and longitude. The A* search, in this context, would work if all
roads had the same speed limit. Obviously, this is very rarely the case.
A higher speed limit may result in a road that is longer taking a shorter
time to traverse than a shorter road, if the first road has a higher speed
limit than the shorter road. This fact renders a geographic heuristic use-
less, and requires the development of a heuristic that can work around this
problem.

3.3 Solution Finder

The solution finder is designed to return a better-than-average set of routes
that efficiently utilize available vehicles and delivers the product to all de-

3



Figure 1: Displacement operation

Figure 2: Insertion operation

livery points. It has two classes, the Route class and the Solution class.
A Solution object has an array of Route objects. In terms of genetic al-
gorithms, the Route objects are the “genes” of the Solution object. The
solution finder will have a certain number of Solution objects that will be
manipulated to find an acceptable result. A Route object has a vehicle
assigned and contains an array listing all the deliveries on that route.

3.3.1 Genetic Operators

These are various operators that can be used to perform genetic mutations.
Customers can be displaced from routes, deleted from one route and in-
serted in another, or swapped with other customers. Routes can also be
randomized.

Figure 3: Swap operation

4



3.3.2 Initializing

The program initially creates a list of customers. From that list, it ran-
domly selects a customer and tries to add it to the current route. The only
constraint is that the addition of the customer must not cause the vehicle’s
capacity to be exceeded. If it is successful (i.e. the vehicle’s capacity is
greater than the sum of the assigned orders), then it proceeds to the next
customer. If it is not, it then creates a new route and assigns the next vehi-
cle. It then repeats this process until all customers are added. The solution
is then copied nine times into new solutions.

3.3.3 Manipulating

The program then begins iterating through generations. Each of the ten
potential solutions is assigned a particular set of manipulations, as shown
in table (1). The manipulations that had the highest success rate as de-
termined by testing were assigned to two solutions each, and the other
manipulations were assigned one solution each.

During each generation, the ten solutions that will be manipulated are
copied from an original solution. The original solution is the best solu-
tion from the previous generation. The ten copied solutions are then run
through their appropriate manipulations.

Each time a solution is run through the manipulations, the total dis-
tance traveled over all its routes is recalculated and stored. Once all so-
lutions have been manipulated, the distances traveled of each of the solu-
tions are compared. If none of the newly manipulated solutions are better
(i.e. have a lesser sum of distances than) the original solution from which
they were copied, then the generation terminates and the original solution
remains the same. If, however, any of the newly manipulated solutions do
have a better value (i.e. a lesser sum) than the original solution, then this
new solution is copied as the original. The generation then terminates and
proceeds to the next generation.

Upon reaching the specified number of generations, the program stops
mutating solutions. The current original solution is outputted, as well as
its improvement over the initial, randomly created solution. This improve-
ment is expressed as a percentage of the distance traveled using the initial
solution.

5



Figure 4: Flowchart for each generation

6



3.4 Heuristics

This program attempts to replicate a person’s job. Therefore, it has been
given certain guidelines in terms of how to evaluate results intelligently.
The guideline is called a heuristic, and is also known as a fitness func-
tion. For the solution finder to work, a function to determine how ”fit” a
solution is needs to be created. For this project, the fitness function f is

f =
DT

PD
(1)

where DT is the sum of the distances traveled on each route in the solu-
tion, and PD is the total product delivered over the routes. The goal of
this program is to minimize the result of f . Since, for a given situation the
product delivered would be identical, the effect of this goal is to minimize
distance traveled.

This function could be modified in serveral manners. Single variables,
such as time spent traveling, could replace distance traveled. A more com-
plex function that takes into account several variables, such as time, dis-
tance, and vehicle fuel economy, could be used that would weight each
of the factors. The denominator could also be replaced by a quantitative
value that needs to be maximized, such as number of stops per route.

4 Testing

Testing required two steps. First, each set of genetic manipulations were
evaluated separately to determine each set’s ability to find a better solu-
tion. Then, the top three sets of manipulations were assigned to two so-
lutions each, and the remaining four sets assigned to one solution each.
This set of ten solutions was evaluated many times using various combi-
nations of the ten solutions. Each of these combinations is tested several
times and the results averaged. The best combination of manipulations
was selected for the final version of the project. See Appendix A for all
tables and results.

7



5 Results

The goal of this project was to create a program to assist volunteer groups
and other organizations that need to deliver items but do not maintain
standarized fleets of vehicles. The object was not to find the best solution,
but one that would be significantly better than what a human team could
do, as well as remove the burden of such a laborous task from volunteer
personnel. In this regards, it is successful. The core program works ro-
bustly, and simply needs to have output formatted.

From a research standpoint, this project was a success. A way to ap-
ply genetic algorithms to this version of the Vehicle Routing Problem was
found. The program consistently offers improvements between 10% and
15% over the initial, random solution. Extensions of this project could look
into improving several variables that regulate the likelyhood of a particu-
lar route being manipulated, or have the program start from a better posi-
tion by more intelligently creating the first solution.

Appendix A. Tables

For tables (2) and (4), the numbers to the right of ”Run #” indicate which
set of manipulations was being tested in that run. They can be referenced
in tables (3) and (5), respectively. For tables indicating test results, the
numbers should be interpreted as percentages in decimal format. They
were found by dividing the distance of the best solution found with the
given manipulations by the distance of the inital, randomly created solu-
tion..

References

[1] B. Yu, Z. Yang, and B. Yao, “An improved ant colony optimization for
vehicle routingnext term problem ”, European Journal of Operational
Research, pp. 171-176, 1 July 2009.

[2] D. Coltorti and A. E. Rizzoli, “Ant Colony Optimization for Real-
World Vehicle Routing Problems”, SIGEVOlution, pp. 2-9, Summer
2007.

8



Table 1: List of solutions assigned to each set of manipultions
Type of manipulation Number of solution arrays

Swap 1
Randomize 1

Insertion 2
Swap+Insertion 2

Swap+Randomize 1
Insertion+Randomize 1

Swap+Insertion+Randomize 2

Table 2: Results of each manipulation applied singly (10,000 generations)
Run # 1 2 3 4 5 6 7
1 .921 .833 .930 .890 .933 .884 .901
2 .920 .875 .920 .915 .901 .894 .904
3 .905 .863 .938 .892 .937 .924 .913
4 .935 .862 .945 .850 .890 .944 .929
Avg. .920 .858 .933 .887 .915 .912 .912

Table 3: Index table for table (2)
1 Swap
2 Insert
3 Random
4 Swap+Insert
5 Swap+Randomize
6 Insert+Randomize
7 All

Table 4: Results of combinations of manipulations (10,000 generations)
Run # 1 2 3 4 5 6
1 .872 .833 .857 .868 .868 .863
2 .885 .857 .861 .871 .912 .863
3 .886 .861 .873 .893 .923 .870
4 .900 .879 .879 .894 .930 .894
Avg. .886 .858 .868 .882 .908 .873

9



[3] X. Gao and L. J. Schulman, “On A Capacitated Multivehicle Routing
Problem”, PODC ’08, pp. 175-184, 2008.

[4] M. Geiger, “Genetic Algorithms for multiple objective vehicle rout-
ing”, MIC’2001, pp. 349-352, 2001.

[5] B. A. Julstrom, “Greedy, Genetic, and Greedy Genetic Algorithms for
the Quadritic Knapsack Problem”, GECCO ’05, pp. 607-614, 2005.

[6] G. Lamont and M. Russell, ”A Genetic Algorithm for Unmanned
Aerial Vehicle Routing”, GEECO’05, pp. 1523-1530, 2005

[7] H. W. Leong and M. Liu, “A Multi-Agent Algorithm for Vehicle Rout-
ing Problem with Time Window”, SAC ’06, pp. 106-111, 2006.

[8] J. Tavares, P. Machado, F. Pereira, and E. Costa, “On the Influence of
GVR in Vehicle Routing”, SAC 2003, pp. 753-758, 2003.

[9] S. R. Thangiah, O. Shmygelska, and W. Mennell, “An Agent Archi-
tecture for Vehicle Routing Problem”, SAC 2001, pp. 517-521, 2001.

10



Table 5: Index table for table (4)
1 1 Swap+Insert
2 2 Swap+Insert
3 2 Insert; 2 Swap+Insert
4 1 Insert; 1 Swap+Insert
5 All 10 Solutions
6 1 Insert; 2 Swap+Insert

11


