
Solving the Vehicle Routing Problem for
Multiple Multi-Capacity Vehicles

Michael Sanders
TJHSST Computer Systems Lab 2008-2009
Abstract

 The Vehicle Routing Problem (VRP) has existed
as long as a distributor has needed to deliver items.
As such, the VRP has been solved with many
different methods, including agent architecture and
ant colony modeling. However, these methods have
generally been set up for an established organization
that has a specific number of vehicles with only a few
unique capacities. This project aims to create a
program that will identify a very good solution for the
VRP, but in a case where all the vehicles could have
different capacities. This is the situation faced by
some volunteer groups that do not have established
vehicle fleets and rely on people volunteering
vehicles when something needs to be distributed.

Background
A great deal of research has been done into the VRP
and its variants, such as the VRP with Time Windows
(VRPTW) and Multi-Depot VRP (MDVRP). Of
particular interest to this project are those that deal
with solutions making use of genetic algorithms.
Several projects have made use of genetic vehicle
representation, where each solution has genetic
material that represents the solution's routes.

Genetic Algorithms
The solution finder implements a genetic algorithm to
manipulate Solution objects. Operations will involve
removing customers from one route and placing
them in another (insertion), switching two customers
between two routes (swap), and randomizing routes.
Combinations of these operations can be combined
to optimize the final solution.

Conclusions and Extensions
A method of using genetic algorithms to solve the

VRPMMCV was found. The program can be
implemented by adding solutions to the breeding
pool and assigning them different combinations of
genetic manipulations. For this project, the final
version of the program used a breeding pool with two
solutions that were each assigned to the insertion
operation, as testing had shown this to have the best
result of the combinations tested. Further projects
can determine methods to optimize the breeding
pool's design. Other extensions include optimizing
the mutation rate and implementing more genetic
operations.

Procedures
The program first reads in all customer and

vehicle information. A solution is created by
randomly assigning customers to vehicles and
routes. The program then proceeds a set number
of generations. During each generation, a set of
solutions are manipulated by different genetic
operators. After all the solutions have been
manipulated, their distances are compared with
the original distance. The solution with the
shortest distance becomes the original solution
for the next generation. The flowchart below
shows a graphic representation of a generation.

Testing
Each of the different genetic operations were

tested singly, in pairs, and then all together. The
resulting number is a ratio, found by dividing the
total distance traveled on the final solution by the
total distance traveled on the original solution;
thus, the smaller the ratio, the better solution was
found. The results indicated that using only the
insertion operation resulted in the best average
results.

Run #/
Type of
operation

Swap Insert Rndm. Swap+
Insert

Swap+
Rndm.

Insert+
Rndm.

All

1 .921 .833 .930 .890 .933 .884 .901

2 .920 .875 .920 .915 .901 .894 .904

3 .905 .863 .938 .892 .937 .924 .913

4 .935 .862 .945 .850 .890 .944 .929

Avg. .920 .858 .933 .887 .915 .912 .912

	Slide 1

